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FOREWORD


Realizing the need for a publication to encourage further 
scientific approach to the solution of many traffic problems, the 
Eno Foundation is pleased to present this methodical discussion 
of some statistical theories and their application in the analysis 
of traffic data. 

The Foundation was fortunate in acquiring the services of 
Dr. Bruce D. Greenshields, Professor and Executive Officer, Civil 
Engineering Department, and Dr. Frank M. Weida, Executive 
Officer, Departmentof StatisticsTheGeorgeWashingtonUniversi­
ty, as co-authors.Byknowledge and experiencethey are eminently 
qualified. They have been guided by a practical insight and have 
shown an unusual and necessary discernment of the subject. 

In some quarters, thinking on traffic as a national problem has 
reached a degree of desperation. This is due partly to confusion. 
It is hoped this study will provide some clarification by em­
phasizing the importance of an analytical basis for initiating 
logical improvements. Such procedure shouldtend to create better 
understanding and much-needed uniform basic methods. 

It has been a privilege for the Eno Foundation to provide the 
preparation and publication of this monograph. Publication has 
resulted from considerable time and effort by both authors and 
the Foundation Staff. 

Tiu& ENo FoUNDATION 



PREFACE


The engineer, and particularly the traffic engineer working in a 
comparatively new field, faces constantly the need for new, more 
precise information. To obtain this information, he collects and 
analyzes data. The theory and procedures to be followed in such 
analyses have long been known to the statistician, but not always 
to the enameer. 
Mathematics he learns forhis engineering is of the classical type­
algebra, trigonometry, calculus - in which exact answers are 
obtained. In statistics no answer is exact for there is always a 
range of variability within which the true answer lies. Variance, 
the measure of this variability, may in some cases be so small 
that the result for practical purposes may be considered exact. 
But usually it is not. In traffic behavior, a phase of humanbehavior, 
it is well to employ the "mathematics of human welfare." 

Traffic research carried on at various times over a period of years 
by one of the writers has served to confirm the fact that traffic 
behavior tendsto follow definitestatistical patterns. The difficulty 
of solving the problems encounteredin analyzing thedata collected 
during that research pointed to the need for someone to gather 
together and explain the statistical methods most pertinent to 
traffic analyses. 

In response to this need, this monograph is written. Desired in­
formation, it was felt, could be assembled, developed, and presented 
most effectively, by a traffic engineer and a statistician working 
together. The one would know the viewpoint of the engineer and 
the limitation of his statistical training and vocabulary. The other 
would provide that knowledge and skill in his own field that can 
be obtained only after years of work and study. 

The authors, despite the work involved, have enjoyed what seemed 
to them a very worth while undertaking. This monograph is not 
in any sense the last word on the subject. It is merely an intro­
duction, which they hope will assist the engineer in determining 
the type and amount of data he needs to obtain sufficiently 



vi PREFACE 

accurate answers to his problems and save him time and effort. 
They trust that if it is a new tool to him it will be to his liking. 

In the first four chapters the authors have attempted to explain 
this mathematicaltool, and in the last one they have attempted to 
show how to use it. 

The authors wish to thank the Eno Foundation and staff for its 
kindly criticism, good counsel, encouragement and sponsorship. 
They are indebted to Professor Herman Betz of the Department 
of Mathematics at the Universityof Missouri for his careful review 
of the manuscript. 

WashingtonD. C. BR
ucE D. GREENSHIELDS 

June 1, 1952 
FRANK M. WEIDA 
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CIUPTER I 

THE NATURE AND UTILITY OF STATISTICS 

I. 1. General Remarks. The rapid movement of traffic on our streets 

and highways in ever changing patterns is one of the most familiar 

andbeneficialphenomenaofour daily lives and atthe sametime one 

of the most confusing and vexing. The annoyances and even danger 

experienced in driving over congested streets and highways, the 

lack of places to park and, in general, the inadequaciesof our high­

way system are widely recognized. There is clearly a need for in­

creased knowledge of traffic behavior in order that traffic regula­

tion and planning may be made more scientific. The method by 

which scientific knowledge is increased is to observe what happens 

and then by inductive reasoning to establish general laws pertain­

ing to these happenings. It is the purpose of this book to develop 

a scientific system known as Statistical Methods and show how to 

use these methods for analyzing and solving traffic problems. 

Mathematical probability, which is the basis of all statistical 

theory, had its beginning in ancient times. Certain mathematical 

patterns developedas pastimes by the Greeks and others were first 

found to coincide with chance happenings such as occur in card 

games and later found to coincide with actual happenings. It was 

not until the Seventeenth Century that one of the first practical 
uses was made of probability, when life expectancy tables were 

publishedfor use in computing life insurance premiums and bene­

fits. Among the early important contributorsto the theory of pro­

bability we find the names of DeMoivre, La Place, Gauss, Pascal, 

Fermat and Bernoulli. 
The methods of statistics have long been employed by the 

chemist, the sociologist, the physicist, the biologist, the bacteri­

ologist, the physiologist, the economist, the meteoroligist, the 

business man, the psychologist, and many others. In the biological 
sciences, the whole theory of evolution and heredity rests in reality 

on a statistical basis. Likewise, the behavior of thebodymechanism 

itself lends itself to statistical analysis. Statistical theory is the 
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basis of various aspects of theoretical physics and chemistry as de­

monstrated by Gibbs, Bohr, Einstein, Fermi, Dirac and others. In 

the social sciences, statistics is used in the measurement of the 

sizes of the population, the birth, marriage, mortality and morbi­

dity rates, and in determiningthe distributionof the population by 

trade or income, wages, prices, production, foreign trade, and 

transportation. In manufacturing, statistics facilitates efficient 

management, economic control of the quality of manufactured 

products, and the evaluation of laws of behavior to determine 

control or lack of control. Statistics is the basis of corrective legis­

lation. But in spite of this wide-spread use, it is only within the 

last few years that the traffic engineer has come to realize that 

statistics is his most useful tool'- The traffic engineer should fully 

realize the importance of the statistical approach to the solution 

of his problems. If therehas been some failure on his part to do so, 

it no doubt is due to its omission from his engineering training in 

which he has been taught to assume that the values with which he 

is dealing are exact and always the same. Each individualpiece of 

material of a given kind and size is assumed to behave the same as 

any other piece of the same kind and size. Statistics deals with 

measurements which at best are approximate values which are 

usually not the same when repeated. In traffic engineering, the in­

dividuals are human and it can not be assumed that they will 

always behave in precisely the same manner. 

The automobile does not become a complete mechanism until 

the driver is behind the wheel. It is the driver who sees the curve 

ahead and turns the steering wheel accordingly, who sees the ob­

struction and applies the brakes. It is the emotional and physical 

characteristicsof the driver that must be measured and evaluated. 

To this end, the trafficengineer must use the special type of mathe­

matics that applies to the problem he is considering. 

In this attempt to make statistics more readily available to the 

traffic engineer and others, an effort will be made -not only to ex­

plain statistical methods, but to show by example how they may 

be used in the solution of trafficproblems. An understanding of the 

calculus is desirable but not essential for use of the methods in­

volved. In using statistics it must be kept in mind that it is the 
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handmaidenof reality and not reality itself. In all cases it must be 

demonstratedthat the statisticallaw of behavior to be used agrees 

with actual behavior. 

As the statistical methods axe developed, it will be found that 

they constitute a unified structure. This will become apparent as 

the developmentis followed step by step. The first step win be to 

explainstatisticalterms through the derivation and explanationof 

the mathematical and statistical probabilityformulae which form 

the basis of statistics. The use of these formulas win become clear 

through their application to the solution of typical problems. 

1. 2. Definition and Nature of Statistics. Statistics is the funda­

mental and Most important part of inductive logic. It is both an art 

and a science, and it deals with the collection, the tabulation, the 

analysis and interpretation of quantitative and qualitative mea­

surements. It is concerned with the classifying and determining of 

actual attributes as well as the making of estimates and the testing 

of various hypotheses by which probable, or expected, values are 

obtained. It is one of the means of carrying on scientific research 

in order to ascertain the laws of behavior of things- be they animate 
or inanimate. Statistics is the technique of the Scientific Method. 

1. 3. Statistics and Mathematics. Statistics is a branch of applied 

mathematics. It differsfrom so-calledpure mathematics in thatthe 

values in statistics are approximationsor estimates, but -not mere 

guesses. The rules and methods of operation are those of pure 

mathematics for it is the tool of statistical analysis. 

An "exact" value in pure mathematics may be thought of as 

one of the possible values a variable may assume. There are but 

two possibilities in pure mathematics, namely: the variable has a 

certain value or it does not have that value. In the first case, the 

probability is 1, meaning that it is certain that the variable has 

that value, while in the second case the probability is zero, mean­

ing that it is certain that the variable does not have that value. 
The variable in statistics, called stochastic variable or variate, is 

much more general than the variable in pure mathematics. The 

stochastic variable is one, to each of the many possible values of 
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which, there is attached a probability, p, that it attains said value. 
As will be shown in Chapter III, this probability may have any 
value between zero and one. This fact is expressed mathematically 
as 0 :< p < 1. 

The stochastic or random variable may be discrete or continuous. 
It is called discrete if it can take on only certain isolated values in 
an interval and it is called continuous if it can take on any value 
in an interval. It is to be noted that the probability that a con­
tinuous stochastic variable has a specific value is always zero. 

J. 4. Two General Types of Problems. Statisticsdeals withproblems 
that fall into two general categories. 

1. The first of these categories of problemshas to do with charac­
terizing a given set of numerical measurements or estimates of 
some attribute or set of attributes applying to an individual or a 
given group of individuals. This entails the finding of a mathe­
matical model that fits the pattern of the variation in measure­
ments or the variation in the things being measured. The engineer 
is familiar with the fact that a distance may be measured several 
times with a different result each time, and he knows that the 
mathematicalpatterncalled " The Principleof Least Squares" is used 
in characterizing such measurements. In studying some attribute 
such as the ability of students, it is found that there are just a's 
many brighter than "average" as there are less bright and this 
pattern is called "normal" and there is a mathematical equation 
for such a normal curve. Other laws of behavior (distributions) are 
found to follow other mathematical patterns, such as Poisson's 
"random" curves (distributions), the Pearson system of distribu­
tion and others. 

Fortunately, these mathematical patterns are all of the same 
basic nature. It will be one of our tasks to describe and explain 
this phase of statisticalmathematics. 

2. The second category of problemshas to do withcharacterizing 
an attribute or attributes belonging to all individuals of the group 
one is investigating, such as all white pine lumber or all the people 
living in Ponca City, all people with red hair, or all aluminum 
alloys of a given specification. These well defined classes of items 
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are called populations or "universes". This second class of problems 

involves the selection of random samples from the population, the 

statistical study of these samples, and the drawing of inferences 
from them. 

The problems just mentioned indicate that (1) the data must be 
summarized as will be discussed in Chapter II; (2) they must be 

thoroughly analyzed by obtaining mathematical patterns of the 

laws of their behavior as will be discussed in Chapter III; and (3) 

it must be possible to draw inferences from the samples in regard 
to the reliability and significance of pertinent summary values 

obtained from the samples for the purpose of characterizing the 
"universe" as will be discussedin Chapter IV. 

1. 5. Types of Sampling. One may classify random samplingin two 

ways: (1) Sampling by attributes; and (2) Sampling by variables, 

either discrete or continuous. In samplingby attributes, one deter­

mines the number of times (the frequency) the event happenedas 

specified and the numberof timestheevent didnothappenasspeci­

fied. In samplingby variables, we measuresuch thingsastheweight 
or length of an object, the duration of an event or the intensityofa 

force. We may also measure a group of individuals in order to 

characterize them in regard to multiple categories such as weights, 

heights, temperatures, etc., to be considered jointly. The basis of 

all such characterizations is counting. Hence we must determine 

the frequency of the occurrence of a characteristicor event among 

n possible occurrences or non-occurrences or among n trials. 

1. 6. The Variables to be Measured and Interpreted. The statistical or 

scientific method applies not only to the analysis and interpreta­

tion of data but to the whole procedure of first recognizing the 

need for increased knowledge about a particular problem; second, 

the gathering of data aboutthe problem; third, studyingthe signi­
ficance of the data; and finally, presenting the results of the in­

vestigation in a report. In carrying out this statistical procedure 
there are certain precautions that must be observed. 

The recognition of the need for more information about a parti­
cular problem usually comes from those who have to deal with it. 
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A researchproject conducted in Ohio in 19394 will serve to illustrate 
the steps in conducting an investigationto obtain certain specific 
information. This study had to do with center-line markings of 
roadways. The fact that different states had, and still have, 
different systems of markings, causing confusion to motorists, 
pointed to the obvious need of determiningthe best type. 

The first question to be answered was: Is the problem solvable 
by statisticalmethods ? If so, what method or methods are applic­
able, what variables need to be measured, how much data are 
needed, and how best to obtain the needed data? 

In the problem of center-line marking, one is interested in the 
qualities that make a good center-line marking. Some such 
qualities are visibility, interpretability and durability. But what 
about other things ? Is a broken line just as satisfactory for a 
center-line as a solid line? The broken line is cheaper because it re­
quires less paint. What kind of a line or lines should be used to 
mark a "no-passing" zone? Such questions, of course, can only be 
answeredafter the study is made. Hence it was necessary to make 
a provisional conjecture as to what types of center-line marking 
should be tested. 

I. 7. Means of Measuring the Variable, and Precautions to be taken. 
Having decided provisionally on what types of center-lines to test, 
the next step was to devise a means of measurement. Should it be 
done by noting the behavior responsepatternof drivers to different 
types of markings ? Should a speed check be made ? Should drivers 
be questioned? Should some other methods be used? What is the 
probable cost and efficiency of the different possible methods? 
What type of equipment is necessary to make the recordings ? 

It has been found by experience that it is sometimes necessary 
to design and construct special equipment or apparatus to record 
field data. It is recaRed that in 19322 it was only after consider­
able thought that the rather simple expedient of time-motion 
pictures was used to record the speed and spacing of vehicles. A 
mechanical device, provided it is first checked for mechanical 
defects, is always more reliable than human judgment. The picture 
method possessed one other feature that is not often attained. It 
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gave complete informationon all that happenedwithin the field of 

view. The pertinent information could then be selected at leisure 

and if a wrong conjecture was made, other information already in 

hand could be studied. 

It was decided in the 1939 project to take speed recordings with 

the Eno-scope, a device using mirrors so arranged that the time at 

which a vehicle passes two successive positions on the roadway 

can be recorded by means of a stopwatch. These positionsmust be 

a considerable distance apart, usually 88 or 176 feet, so that the 

human variation in snapping the watch will not cause an appreci­

able error. Another source of error that is not so readily apparent 

is the inability of the observer to take a random sample without 

taking the proper precautions to obtain one. It would seem that if 

the observer simply recorded the speed of as many vehicles as 

possible it would result in an unbiased sample, butsuch is not the 

case. Vehicles tend to bunch into queues behind the slower drivers. 

Depending upon the alertness of the observer, he may be un­

consciously selecting slow or fast vehicles. He must arbitrarily 

select some convenient numberedvehicle such as every third one. 
This device is not infallible. Suppose, for instance, that an 

origin-destination survey is being conducted to determine the 

travel routes of people living in different sections of a city, and 

that it has been decided to interview every tenth house starting 

from an arbitrary point. But would we be correct in assumingthat 

every tenth house constitutes a good random sample? It could be 

that every tenth house is a corner house and hence may be a shop 

of some kind. In this case, some special procedure must be used, 

such as writing the numbers on cards and after shuffling, picking 

every tenth card. 

I. S. The Size of the Sample. The size of the sampleis the quantityof 

data needed to meet certain considerations. One of the considera­

tions is cost, another is time. These depend upon the decision as to 
(1) the maximum.error that will be tolerated and (2) the degree of 

certaintydemanded that this allowable or maximumerror win not 

be exceeded. This definitely determines the size of the sample or the 

amount of data to be collected. The methodof gathering the data 
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is largely dependent upon the structure and character of the 
"universe" from which the sample is taken. 

In the Ohio study of 1939, it was desired among other things to 
get the opinions of drivers about center-lines. Did they prefer a 
yellow line, a white one, a broken line, or a solid line? The obvious 
procedure was, of course, to stop each motoristand ask his opinion. 
But how many? Would the majority of 30 or 40 people agreeingon 
one combinationas being the best be sufficient ? At first one might 
possibly say yes, but on second thought he would realize that an 
opinions might not be unbiased. Perhaps the drivers from Pennsyl­
vania had grown accustomed to a certain combination and would 
prefer that, or the drivers from Ohio might prefer a different 
system. This possible tendency to biased opinions meant that a 
larger sample should be taken and also that along with the opin­
ions, the residence of the driver should be ascertained. 

Sometimes opinions are unconsciously biased. This fact also was 
brought out in the Ohio study. It was decided to try road signs 
worded to warn drivers that they were entering a "no-passing" 
zone. It was doubted that a large percentage of the motorists 
would see the signs, but surprisingly enough, over 98 percent of 
them stated they had seen the signs. This was so unexpected that 
it was questionable, and away of checkingthese answerswas sought. 

The means of checking was revealed through consideration of 
the purpose of the sign. Signs aside from thosewhose shapeconveys 
a message, must be read. A sign much larger than the "no-passing" 
sign was prominentlydisplayed to warn the drivers thattheywere 
entering a "test-zone". This might have been guessed from the 
fact that they had seen 3 or 4 different types of marking within a 
mile or so, but, over one-third when questionedsaid they did not 
know they were in a "test-zone". The conclusion reached was that 
at least one-third and probably more did not see the "no-passing" 
signs in spite of the fact that 98 percent said they had. 

I. 9. The Validity and Reliability ofNeasurement. It is not only opin­
ion measurements that must be checked for validity. In a studyof 
brake-reaction-time made in Ohio in 19343, it was decided to de­
termine whether the facts warranted the assumption that those 
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with quick reaction-time were safer drivers. It was perhaps per­
fectly logical to assume that a quick reaction will enable a driver 
to avoid accidents, but the study showed no relationship of acci­
dents to brake-reaction-time.If this were true, and other investi­
gations have shown that it is, then we deduce that an individual 
with a slow reaction-timeemploys a larger margin of safety and so 
compensates for his shortcoming. In other words, brake-reaction­
time is not a valid measurement to determine whether a driver is 
a safe driver or not since it does not in fact measure what it was 
supposed to measure. 

A measurementis reliable if there is consistency in obtaining it. 
In other words, consistency in measurements increases our con­
fidence in the reliability of the conclusion we wish to draw from 
the set of measurements. 

1. IO. Co8t of the Project. After the amount of data needed to obtain 
results accurate to the degree desired has been estimated, the 
apparatus needed has been decided and the procedure outlined, it 
is possible to estimate the minimum cost. This cost will depend to 
a large extent on the amount of personnel needed and the time re­
quired to complete the study. The cost of developmentresearch is 
easier to estimate than that of basic or fundamental research. In 
the former we know much more about the expected results. Deve­
lopment research follows the fundamental. It is often used to 
verify results that have been suggested by more basic studies. In 
any case, however, it is necessary to estimate the cost. The skill of 
the researcher is rightly or wrongly measured by his ability to 
estimate correctly this cost and effort required to carry on an in­
vestigationto the point where definite results, whetherpositive or 
negative, are obtained and reported. 

I. II. The Report. A preconceived idea or system of thinking must 
not be allowed to influence the reporting of results. A negative 
result is just as important as a positive one. Too often an investi­
gation is conducted to prove a point and this attempt to adhere 
to an established opinion may have undue influence in selecting 
the attribute to measure. 
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The results of a scientific investigationshouldbe presented with 
the same care that was used in conductingthesurvey. All too often, 
information is brought to light only to lose its value through poor 
presentation. Knowledge is useful only as it becomes known. For­
tunately there has been developed a recognized style of engineering 
reports and several good books on the subject are available.5 It 
should be emphasized that the writing of the report should be con­
sidered a part of any scientificinvestigation, and a most important 
part. 

V 1 2. Purpose of the Book. Having indicated the general procedure, 
and noted some of the precautions that need to be taken, we shall 
now attemptto discuss thenecessary theoryand outlinethe techni­
quesfor the solutionof traffic problems. Finallywe shall attemptthe 
solution or partial solution of some of the more typical problems. 

Chapter II presents the method of summarizing data and ob­
taining summary numbers that are useful for the analysis, char­
acterization and interpretation of one or more sets of measure­
ments. 

Chapter III presents the theory and basis of the various mathe­
matical patterns (laws of behavior) that are the underlying prin­
ciples upon which the analysis and interpretation of the results 
depend. 

Chapter IV shows the use of summary methods of Chapter II 
and the basic theory of Chapter III to solve problems by statistical 
methods and to ascertainthe reliability,validity, significance, and 
meaning of the solution. 

Chapter V outlines the solution or partial solution of some 
typical as well as some of the more unusual traffic problems. 
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CHAPTERII 

SUMMARIZING OF DATA 

IL 1. Objective. After the datahave been collected, it is not only con­

venient but necessary that they be condensed in order to be 

analyzed and interpreted by means of summary numbers which 

servetocharacterize the data. Somesummarynumbers are averages 

and included among them are the mean, the median, themode, and 

the standard deviation. 

This chapter shows how to summarize data both analytically 

and graphically. The procedures will be made clear by examples. 

IL 2. Frequency Distribution. A frequency distributionconstitutes 

the first step in classifyingand condensingdata. It is an arrangement 

in which the data consisting of separate values or measurements 

of a variable are combined into groups called classes covering a 

limitedrange of values, such as I to 5 miles, 5 to 10 miles, etc. The 

number of values in each class is called the class frequency. Once 

the observations have been combined into groups, the individual 

items lose their identity and the midpoint of the class group be­

comes a unit quantity with a broader meaning. This requires that 
the grouping be done in such a way that it will accurately re­

present the items from which it is computed. The methods to be 

followed will become clear with an examination of the construc­

tion of a frequency table. 

11. 3. Class Interval and Class -Mark. A class interval sets boundaries 

or limits to a class of a frequency distribution. In Table IL L, the 

lower bounds of the classes are 15, 20, . .. ; the upper bounds are 

19, 24, 29, . . . ; the lower boundaries or limits are 14.5, 19.5 ... ; 

the upper limits or boundaries are 19.5, 24.5, . .. . The class interval 

is 5. By the laws of approximate numbers, the data have been 

rounded off to the nearest whole number so that the speeds are 

correct to the nearest mile per hour. 

12 
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Table II. I 

SPEED IN MILES PIER HOUR OF FREE MOVING VEHICLES ON SEPTEM13ER 16,1939,

IN OAKLAMIN, ILLINOIS ON U.S.H. 12 and 20 AT A POINT ONE MILE EAST OF


HARLEM AVENUE


(1) (2) (3) (4) (5) (6) (7) 

Speed Number Smoothed PerCent Relative, Cumulative Cumulative 
in of Fre- of Frequency Frequency PerCent 

m.p.h. Vehicles quency Vehicles Frequency 

f fe 100 f/n f/n fe 100 fe/n 

70-74 0 0 0 0 
65-69 0 0.7 0 0 
60-64 2 5.7 0.67 0.0067 300 100.00 
55-59 15 10.3 5.00 0.0500 298 99.33 
50-54 14 19.3 4.67 0.0467 283 94.33 
45-49 29 39.0 9.67 0.0967 269 89.67 
40-44 74 54.3 24.67 0.2467 240 80.00 
35-39 60 65.7 20.00 0.2000 166 55.33 
30-34 63 50.7 21.00 0.2100 106 35.33 
25-29 29 32.7 9.67 0.0967 43 14.33 
20-24 6 14.3 2.00 0.0200 14 4.67 
15-19 8 4.7 2.67 0.0267 8 2.67 
10-14 0 2.7 0 0 0 .00 

300 = n 300.1 = n 100.02 1.0002 

Data furnished by Public Roads Administration, Washington, D. C. 

Note: This illustrationis of a continuous stochastic variable which may take any value. An 
illustration of a discontinuous variable is the numbers of vehicles that pass over a highway in 
any time interval. There is no such thing as a part of a vehicle. An illustrationof a discontinuous 
stochastic variable where only even integers are possible is the distributionof rows of kernels on 
ears of corn. 

A class mark is the mid-valueof the class interval. In Table II. I., 

column (1), the class marks are 17, 22, 27..... 
The exact values of a discontinuous variable are usually taken 

equal to the class marks. For many purposes, all the values of a 

continuous variable that fall within a given class interval are 

grouped at the class mark as a convenient approximation. 

The number of values that the variable has within a certain class 

interval is called a class frequency. In Table II. 1. the frequency 
63 in column (2) corresponds to the class 30-34 in column (1). 
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Two conditions which serve as a guide in the choice of the size of 

a class interval are: (a) the desire to be able to treat all the values 

assigned to any one class, without appreciable error, as if they 

were equal to the mid-value or class mark of the class interval: 

lb) for convenience and brevity, it is desirable to make the class 

interval as large as possible, but always subject to the first con­

dition. These two conditions will in general be fulfilled if the inter­

val is so chosen that the number of classes lies between ten and 

thirty. This does not mean, however, that the minimum may not 

be less than ten classes nor the maximummore than thirtyclasses; 
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it merely means that in most cases it is possible to form the classi­

fication with the number of intervals lying between ten and 

thirty. 

Another convenient means of classification is the graphical 

summary method. There are five types of graphs that have been 

found useful: namely, the Frequency Rectangles, the Histogram, 

the Frequency Polygon, the Smoothed Frequency Polygon, and the 
Frequency Curve. We shall now discuss these in the order named. 
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11. 4.Frequency Rectangles. Usingthefrequencydistributionas given 

by columns (1) and (2) in Table II. 1., the rectangles, shown in 
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Figure II. I may be drawn. The class intervals are the bases and 
the altitudes (ordinates) are equal to the frequencies of the classes. 

Unit area is defined as that of a rectangle whose base is a class 
interval and whose altitude is a unit of frequency. This gives a 
one to one correspondence between area and frequency. In other 
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words, since the base is equal to one (class interval), the height is 
thefrequency. 

II. 5. Histogram. A histogramis the systemof upper bases ofthe fre­
quency rectangles. It is illustrated in Figure II. 2. for the fre­
quency distributiongiven by columns (1) and (2) of Table II. 1. 
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IL 6. Frequency Polygon. A frequency polygon is formed by selec­

ting a convenient horizontal scale for the variable being measured 

and a vertical scale for the class frequency and then plottingthe 

points so that the class marks are the abscissas and the class fre­

quencies are the ordinates. This method is shown in Figure IL 3. 

for the distribution given in Table IL 1. 

IL 7. Smoothed Frequency Polygon. The smoothedfrequencypolygon 
is a means of graduationsometimescalled a methodofmoving aver­

ages. It is useful in obtaining an approximation to the probable 

frequency curve or theoretical law of behavior of the attribute 
that is being measured. 

One method of obtaining moving averages is illustrated in 

Columns (1), (2), (3), in Table IL L, in which the smoothed value 

for an interval is obtained by summing the frequencies in that 

interval and the two adjacent intervals and dividing by three. 

Hence, the smoothed value for the interval 15-19 is equal to the 

sum of the frequencies 0, 8, and 6, divided by 3. For the interval 

20-24, we add the frequencies 8, 6, and 29, and divide the sum by 

3. We proceed likewise for the remaining intervals. The smoothed 

frequency polygon for the distribution given in columns (1) and 

(3) of Table 11. 1. is shown in Figure IL 4. By comparing Figure 

IL 4 with Figure IL 3., it is seen that the smoothed frequency 

polygon has removed the irregularities found in Figure IL 3. and 

is closer, in appearance, to a frequency curve. See definition of 

frequency curve, Article 11. 8. 

The number of classes over which an average is taken does not 

need to be three. The decision as to the number of classes that 

should be taken depends upon the total frequency, the total 
number of classes in the distribution, the size of the class interval, 

the equality or inequality of the classes, and the experimental 

error, the discussion of which is beyond the scope of this book. The 

process of smoothingtends to correct for sampling errors, grouping 

errors, and experimental errors. 

An important point to note is that the total area within the 

rectangles, the histogram, the frequency polygon, the smoothed 

frequency polygon and within the frequency curve is equal to the 
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total frequency n. This total frequency in terms of probability is 
thought of as one and in terms of per cent as 100 per cent. The 
height of the frequency rectangles is then expressed as a fraction 
or a per cent. 
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II. 8. Frequency Curve. A smoothcurve superimposed upon thefre­
quency polygon or smoothedfrequency polygon so that the area 
under it is equal to the total frequency is known as a frequency 
curve. Thefrequency curve is an estimate of the limitthat would be 
approached by a frequency polygon or a smoothed frequency 
polygon if we indefinitely decreased the size of the class intervals 
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and at the same time indefinitely increased the frequency n. An 

illustration of a frequency curve for the distribution given in 

Table IL 1. is given in Figure IL 5. where the points of the 

smoothedfrequency polygon have been used. 
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IL 9. CumulativeFrequencies.Anothertypeof distributioncanbese­

cured bythe use of cumulative frequencies. These values are shown 

in column (6), Table IL L, and are obtained by successive adding 

of the frequencies, beginning with the lowest interval. To illus­

trate: starting with 8, add 6 to 8 and get 14- then 29 + 14 which 

equals 43, and so on until 298 plus 2 equals 300 for the last cumul­

ative frequency which, of course, is the total number of cases. 
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The cumulative frequency distribution in the example given 
shows how many vehicles had a speed below (or above) a given 
speed. From columns (1) and (6) in Table II. I., we find that 
8 vehicles had a speed less than 19.5 miles per hour, 14 had a speed 
less than 24.5 miles per hour; 43 had a speed less than 29.5 miles 
per hour and so on. In some cases the cumulative frequencies ex­
pressed as per cents of the total frequencies are more meaningful. 
These per cents are given in column (7), Table II. 1. According to 
column (7), 2.67 per cent of the vehicles have a speed less than 
19.5 miles per hour, 4.67 per cent of the vehicles have a speed less 
than 24.5 miles per hour and so on. 

To obtain the graph of the cumulativefrequencies or the cumul­
ative per cent frequencies, the points are plotted with cumula­
tive values as ordinates and the upper limits of the corresponding 
classes as abscissas. 

The points then are connected with straight line segments 
(polygon) or with a smooth curve. In either case the resulting 
graph is called an ogive. The curve may be interpreted as portray­
ing a law of growth. If the cumulationis in the opposite direction, 
we would obtain a law of negative growth. In the case given, 
2 vehicles (0.67 per cent) have a speed greater than 59.5 miles per 
hour; 17 vehicles (5.67 per cent) have a speed greater than 54.5 
miles per hour and so on. The ogive for both the absolute and per­
centage scale is shown in Figure II. 6. 

The class frequencies may also be expressed as per cents or 
relative frequencies. These values are shown in columns (4) and (5) 
of Table II. 1. In the former case, the total area has been made 
100 units of area and in the latter case the total area has been 
made the unit of area. 

If Y = f (X) is the equation of the frequency curve, then 

fX YdX 

is the number of observations having a value between X, and X2' 
If A is the lower limit of possible values of the variable and B 

is the upper limit, then the total area N, namely, the total fre­
quencyis 



SUMMARIZING OF DATA 21 
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where the whole area under the frequency curve is taken as the 
unit of area. 

In the latter case, Y is called the probability density and YdX 
is called the probability element. 

For the cumulative frequency distribution, in the theoretical 
case in terms of probability, the expression 

x 
F (X) =fA YdX 

is known as the Distribution Function of Probability where 
F (A) = 0 and F (B) = I and A < X < B. 

Frequency distributionsare characterized by summarynumbers 
which often are those functions of the measurementsknown isave­
rages. These averages show the location of central tendencies (if 
any) and serve as bases for evaluating differences between values 
(dispersion) as well as skewness and flatness of the distribution. 
They arealso instrumentalin isolatingextremeor unusualvalues. 

II. IO. Average. An average is a function of the entire group of values 
such that if all the values were equal to one another it would equal each 
one of the group of equal values. 

In general, the values or measurements are unequal, some being 
larger and some being smaller than the average. 

Of the many averages, those which are of most use and interest 
to the statistician are first, the common averages including the 
arithmetic mean, the median, the mode, the geometric mean, and the 
harmonic mean; and second, the averages of differences including 
the mean (average) deviation, the centra harmonic mean, thestandard 
deviation, and the moments&. 

11. 11. Arithmetic Mean. Graphically, the arithmetic mean is the 
abscissa of the centroid of the total areaunder thefrequencycurve 
or frequency polygon. 

It is the pointat which if the whole area is consideredto be con­
centrated, the first moment of the total area will equal the sum of 
the first moments of the components of area into which the total 
area is divided. 
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From Figure II. 7., ff f3L' f2l . . . fk are componentareas and if X1, 

X2, ... Xk axe their corresponding distances from the Y-axis and 

fii 

70 ­

60 ­

50­

'S 40­

E 7=38.230 ­

x4= 32­


x3 = 27- w.­0

20 cm


r2= 6

22


IO­
f1=8 

& X 17 

CIJ CIJ 

Speed in Miles Per Hour 

FIGURE H. 7 

ARiTi1METIC, MEAN OF OBSERVED VEHICLE SPEEDS 

if n 
 fl + f2 . .... + fk, is the total area and X is its distance 
from the Y-axis, then 

nx
f].Xl +f2X2 + ''' +fkXk 

whence 
k 

Zi f, Xi. 
Y.,fIXIL +f2X2 	+ "'' +fkXk- I IL II. I. 

n n 
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Algebraically: The arithmetic mean is the sum of all the values 
of the variable divided by the number of values. If 5
 is the arith­
metic mean and XV X2) X,, represent the values of the vari­
able X, then 

n 

+xn EIXIX XI +X2 + I 11. 2. 
n n 

To illustrate: Let the values of the variable X be 10, 13, 17, and 
18. The arithmetic mean of these values is 

4 

- X1 + X2 + X3 + X4 EiXl 10 + 13 + 17 + 18X = 14.5 
4 4 4 

When certain values of the variable occur more than once, the 
same notation may be used, namely: 

- - XI +X1 +X1 +X2 +X2 +X3 + +XkX II. 11. 3. 
n 

But another symbolic representationis more convenient. Let ft 
be the frequency or number of times the variable X has the value 
XI. The sum of the values XI is ft XI. Let n be the sum of the ft 
where, say, there are k different values of XI and hence of the ft. 
This symbolic representation gives 

k k 

El ft XI El ft Xi II. 11. 4. 
X= I k - 1 

El ft n 

If in II. 11. 4., each ft = I and k = n, the expressionfor Y is the 
same as that given in II. 11. 2. 

If the class intervals are unequal in size, the computational 
process may be simplified by making a simple translation. Let 

x/I 
 Xi - X0 II. 
where X0 may be any convenientvalue whatsoever. In practice it 
is best to use for X0 the midpoint of the middle class if there are an 
odd number of classes, if there are an even number of classes, use 
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the midpoint of a class as near the middle of the distribution as 
possible. 

Substituting the value of Xi as given in IL I 1. 5. in equation 
IL 11. 4., we have 

X
 

k 

El f, Xi 
k 

ff (X'i + XO) 

k 

El fj X'j 

k 

XOzi fl 

n n n 

k 

Since Elf,nand 
k 

Efj/n 

k 

X 
Xi fi X'l 

XO +I -
n 

IL 11. 6. 

In the special case when all class intervals are equal, we may use 

the linear transformation (translation and change of unit) 

Xi =Xi - X0 IL 11. 7. 
C 

where c is the size of the class interval. 

Using the value of Xi from IL 11. 7. in IL 11. 2., 

k 

El ft (ex, + XO) 
X= 1 

n 

Y k k 
'0 El fjCXi fl Xi 

n n 

This when simplified becomes 

k 

X = XO + c 11.11. 8. 

TO illustrate 11. 11. 8., we may use the frequency distribution 

given in table IL 1. 
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Table II. 2 

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16, 

1939, IN oAKLAwN, ILLINOIS ON U.S.H. 12 and 20 AT A POINT ONE MILE 

EAST OF HARLEM AVENUE 

Speed in miles Number of X -X, 8 - S,

per hour Vehicles S S, C


X= S f S 8 fS 

70-74 0 30 6 0 
65-69 0 25 5 0 
60-64 2 20 4 8 
65-59 15 15 3 45 
50-54 it 10 2 28 
45-49 29 5 1 29 
40-44 74 0 0 0 
35-39 60 -5 -1 -60 
30-34 63 -10 -2 -126 
25-29 29 -15 -3 -87 
20-24 6 -20 -4 -24 
15-19 8 -25 -5 -40 

300 -227 

Substituting in IL 11. 8. the necessary values from Table IL 2., 

we find 

k 

X = X.0 + c 

becomes 

/- 227
 
X 
 42 + 5 
 30-0 ) 
38.2. II. i I. 9. 

This result is approximate in that in addition to its possessing a 

sampling error and an experimental error, it possesses a grouping 

error. These errors will be discussed later. 

This arithmetic mean speed of 38.2 miles per hour is the estimate 

of the probable or expected speed of a vehicle at the highway point 

observed. What we wish to know about the mean speed is first, 

whether or not it is reliable and second, the range of speeds above 
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or below it. Is 38.2 miles per hour characteristic for all vehicles and 

if so, to what extent? We are able, with measures of dispersion, 
to find the answers to these questions. After doing this,'we must 

look for a rational explanation of the agreement between the 

statistically obtained values and the actual facts; we must also 

determine what these facts mean. Were different types of vehicles 

observed or was the variety of speeds due to drivers with different 

desires or different abilities in driving, or to some other cause? 

This will be discussed and illustrated in Chapter IV. 

II. 12. Measure of Central Tendency. A measure of central tendency 

is sometimes thought of as a characterizing or descriptive value, a 

norm or a typical value. It is always an average. But an average in 

itself is not necessarily a measure of central tendency. For this to 
be true, the average must agree fairly closely with all of the values 

from which it is obtained. 

II. 13. Mathematical Expectation or Expected Value of a Variable. 

The expectedvalue of a particular valueXi of the variable X is the 

product of Xi and the probability, pi that X takes the value Xi. If 
E (Xi) denotes the expected value of Xi, then 

E (Xi) 
 pi Xi 11.13.1. 

Since the expected value of a sum is the sum of the expected 

values, it follows that the expected value E (X) of a variable X 

1 

which may assume a set of values Xi (i = 1, 2 ....... n) with cor­

responding probabilities pi (i 
 1, 2, n) is 

E (X) 
 El pi Xi 11. 13. 2. 

H. 14. Deviation from Arithmetic Mean. An important character­

izing property of the arithmeticmean is that the algebraic sum of 

the deviations of the values from the arithmetic mean is equal to 
zero. This property is true for no other average. 

To illustrate: Let it be required to find the mean weight of four 

men, who weigh respectively 128, 140, 150, and 190 pounds. Their 
arithmetic mean weight is 

- 128 + 140 + 150 + 190 
X 4 152 lbs. 
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The differences between the individual weights of these four 
men and their arithmetic mean weight are: 

Weights Algebraic Differences 
X XX 
190 38 
150 - 2 
140 -12 

128 - 24 

Sum 
 0 

The above demonstrationmay be stated in the form of a Theo­
rem: The sum of the algebraic differences between the values of a 
variable X and their arithmetic mean X is equal to zero. 

Let Xi (i 1, 2, . . ., k) be the values of the variable X, let f, 
(i = 1, 2, .. k) be the corresponding frequencies and let X be 
the arithmetic mean. Then 

k - k k
El fi (XI - X) = El fl Xi _ X El fl. 
I 1 1 

But k k 

El f i 
 n and 'Fl fi Xi = nX,
1 1 

Hence k 

El fl (Xi - X) = nX - nX 
 0.
I 

This Theorem may be expressed in terms of mathematical ex­
pectation as follows: The expected value E I X - E (X) I of the, 
deviations of a variable from its expected value E (X) is zero, that is: 

E f X - E (X)j 
 0 11.14.1. 

Another characteristic of the arithmetic mean is its additive 
property. The meaning of this property may be made clear by 
finding the mean of two sets of given values. Let the first set be 
115, 128, 140 and the second be 150, 190. 

The arithmeticmean of thefirst set is 115 +128 +140 == 127 2/3
3 
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and of the second set is 150 + 190 170. The arithmetic mean of 
2 

115+128+140+150+190 
the composite of thetwo sets i 144-1. 

5 

But the weighted arithmetic mean of the two arithmetic means 

is 

3 (1272) + 2 (170)
3 144 3 

3 + 2 5 ' 

This illustrates a theorem: The arithmetic mean of the sum of two 

variables is the weighted arithmetic mean of their arithmetic means. 

Symbolically: If XI is the arithmeticmean of the first set having nj 

values and X2 is the arithmetic mean of the second set having n2 

values and if Xi, + x, is the weighted arithmetic mean of the two 

arithmetic means, then 

n, XI + n2 X2 = -X, IL 14. 2. 
xi
 +,E. nj + n2 

where X is the arithmeticmean of the n, + n2 values. This may be 
generalized to any number of variables. 

In terms of expected values the theoremis stated as follows: The 

expected value of the sum of two variables is the sum of their expected 

values, that is: 

E (XI + X2) = E (XI) + E (X2)' IL 14. 3. 

To illustrate another theorem, reconsider the set of values 115, 

128, 140. If we multiply each value by 2, we have the values 230, 

256, 280. The arithmetic mean of 115, 128, 140 each multipliedby 

2 is 

230 + 256 + 280 = 2 1115 + 128 + 140 2 (1272) 

3 3 1 = 3 

The theorem is: The arithmetic mean of a constant times a variable 

is equal to the constant times the arithmetic mean of the variable. 

In terms of expected values the theoremis: The expected value of 

a constant times a variable is equal to the product of the constant by the 

expected value of the variable, that is: 

E (ex) = CE (X) IL 14. 4. 
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Let us reconsider the arithmetic mean, namely: 
k 

1i f, Xi f, 

X 
_Xl + f2 X2 . ..... + fk Xk 
n n n n 

k fj 
where 1i ­

1 n 

It is important to note that the coefficients of the Xi, namely, 
the fi/n, are the relative frequencies of occurrence of these values. 

But from the definitionof statisticalprobability(see ChapterIll), 
the limitingvalues of the fi/n, as n becomeslarge beyond all bounds, 
are the pi, where pi is the probabilityof occurrence of a value Xi 
of X among a set of mutually exclusive values Xi. 
Symbolically: 

if, Xi 
E (X) 
 lim X == lim 
 
 7,P1 Xi 11. 14.5. 

ia
 . U-
 n 
where pi Xi is the expected value of a particularvalue Xi of X and 
El pi Xi is the sum of the expected values of the different par­
ticular values Xi of X. But the sum of expected values is the ex­
pectedvalue of the sum, and is calledthe mathematical expectation. 
It is also known as the probable or expected value of the variable. 

It also follows from 11. 14. 5. that the arithmetic mean X of a 
sample is an approximation to the probable or expected value, 
namely, the true or universe value. 

The arithmetic mean is most important in estimating and pre­

dicting. The arithmetic mean X of a sample is the unbiased estim­
ator (a value whose expected value is the true value) of the true 
mean of the population-thelatter being E (X). 

To illustrate: Suppose we have a considerablenumber of observa­
tions of the speeds in milesper hour of vehiclespassinga givenpoint. 
These may vary, say, from 19 miles per hour up to 70 miles per 
hour. Suppose we wish to answer the question: At what speed in 
miles per hour wild - vehicle pass this point? The answer definitely 
is the expected value if we have the "universe", or the arithmetic 
mean if we have a random sample of the observed speeds. The 
arithmeticmean is the onlyone of the averages for a set of measure­
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ments that is an expected value. Furthermore, no quantity is of 
any real value for predicting purposes unless it is a probable or 

expected value or unless as determined from a sample it is an 

optimum or unbiased estimator. An optimum estimator is onethat 

is consistent, efficient, and sufficient. 

Another important theorem concerned with expected values is: 

The expected value of the product of two mutually independent vari-

Wes is the product of their expected values. To illustrate: 

Toss three pennies and throw three dice. The number of heads 

occurring with the corresponding probabilities is shown in Table 

H.3. Likewise, the number of one spots occurring with the corres­

ponding probabilities is shown in Table H.3. 

Table H.3 

Pennies Dice 

No. No. of 
of Heads Probability One spots Probability 

X Pi Y P2 

0 11/8 0 125/216 

1 3/8 1 75 /216 

2 3/8 2 "5/216 

3 11/8 3 1/216 

Table IIA 

EXPECTED VAL-UES 

Pennies Dice 

X pi X Y P2 Y 

0 0 0 0 

1 3/8 1 75/216 

2 6/8 2 30/216 

3 3/8 3 3/216 

E (X) 3/2 E (Y) 1/2 
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In Table IIA is shown the expected number of times for the 

different possibilities for number of heads occurring as well as the 

expected number of heads. Also, there is shown the expected 

number of times for the different possibilities for number of one 
spots occurring as well as the expected number of one spots. 

Table 11.5 lists for the compound event the expected number of 

times for the different possibilities for number of heads and one 

spots occurring as well as the expected number of heads and one 

spots. 

Table II. 5 

EXPECTED VAL-UES 

Dice and Pennies 

Heads One Spot Compound Probability 
X Y A. P2 X Y PIP2 

0 0 125/1728 0 

0 1 76/1728 0 

0 2 15/1728 0 

0 3 "/1728 0 

1 0 375/1728 0 

1 1 225/1728 225/1728 

1 2 4-5/1728 90/1728 

1 3 3/1728 9/1728 

2 0 37'/1728 0 

2 1 225/1728 450/1711 

2 2 45/1728 "'0/1728 

2 3 3/1 728 11811728 

3 0 125/1728 0 

3 1 75/1728 225/1 728 

3 2 15h728 90/1728 

3 3 1/1728 9/1728 

E (Xy) ..../1728 '/4 

From the above tables, it is seen that [E (X) 3 [E (Y) I] 
[E (XY) fl which symbolically is,

4 

E (XY) = E (X) E (Y). IL 14.6. 

In the case of two samples of data: The arithmetic mean of the 

product of two mutually independent variables is the product of their 
arithmetic means. 
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This theorem may be generalized to any -number of mutuallyin­

dependent variables. 

II. 15. The Deviations from Any Arbitrary Value. The arithmetic 

mean of all the deviations from any arbitrary number, added to 

that number is the arithmetic mean of the values. This theorem 
may be explained by considering the weights of five persons who 

weigh respectively 135, 175, 180, 185, 190. Suppose we select 

X0 = 180 as the arbitrary number, then 

X f x X - X0 
135 1 - 45 

175 1 - 5 

180 1 0 

185 1 5 

190 1 10 

n 
 5 - 35 

and K 
 180 - 355
 173. 

This is a much shorter method than adding all the items and 

dividing by their number. 
Symbolicallythe theorem may be expressed as 

X = X0 + Zx"/n 

where 

X0 = any arbitrary value but usually a guessed mean meaning 

that it is as near the actual mean as can be estimated. 

x" = deviation of each value from X0, the estimated mean. 

n = number of cases (individual values). 

11. 16. Mean Values in General. A Mean Value in general may be 

thought of as the centroid of a frequency diagram. Let y = f (x) 

be continuous in the x -interval (a, b). 

Divide (a, b) into n equal parts, of length Ax and let yj (i = 1, 2, 

.... I n) be the value taken by y in the ith part. The arithmetic 

mean of the numbers yl, Y21 ., yn, that is 

- Y1 + Y2 + + Y1 + + Yn 
y = II. 16. 1. 

13 
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y 

Xi 

01 a ax b X 

FIGURE II. 8 

GRAPmcAL REPP.ESENTATION OF THE MEAN VALUE 

will approach a definite limit as n tends to infinity. If the numer­
ator and denominator of II. 16. 1. are multipliedby Ax, its forin 
is changed to 

YJLAX + Y2A:K + + YIAX + + YnAX- IL 16. 2. 
nAx 

But nAx = b - a and the area A under the curve between the 
limits a and b is 

A 
 Limit (y,_Ax + Y2AX + + YiAX + + YnAX) 
Ax-O 
n-w 

=fb =fb 

d A y d x. 

Hence, the mean value - of y is 
n b 

zi YjAx y d x 
y = Limit-!
 II. 16. 3. 

n-. nAx b-a 

Likewise, the mean value K of X is found by taking first moments 
about the y-axis, namely: 

A X = fx d A., whence 
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b 
fxydx 

b IL 16.4. 
f. Y d x 

IL 16.2. may be interpreted as the average weight of nAx 

objects having various weights where Ax objects have a weight of 

yl, Ax have a weight of y2, .. .. 

11. 16. 3. may also be obtained by the use of moments as illus­

trated in Figure 11. 8. Here yiAx objects have, say, a distance xi. 

The moment of yiAx about the y-axis is xiyiAx. The moment of 
n 

the whole, if x- is its distance, is X_ (b - a) and also 1I Xi Yi Ax. 

n b 

Hence: X_ (b - a) liln xi yj Ax ydx,
AX- 0 

b 
xi yj Ax xydx


whence: X_ lim.

,X-0 b-a b - a


The notion of mean is readily extended to functions of two or 

more variables. To see this generalization, the reader is referred to 

any book on Calculus or Mechanics. 

IL 17. The Mode. The mode or modal value of a variable is that 

value of a variable which occurs most frequently, if such a value 

exists. It is the most probable value, or in other words, the value 

for which the frequency is a maximum. The expressionmost prob­

able value when it refers to the number of successes in n trials is 

used in the general theory of probability to designate the number 

to which there corresponds a larger probability of occurences than 

to any other number. The point at which the frequency is most 

dense is the abscissa of the maximum point of the frequency curve 

and can be determined accurately only from the equation of the 

curve. 

For a given grouping the class mark of the maximal class fre­
quency is called the empirical mode. 

An approximation to the mode may be obtained by passing a 

parabola through the midpoints of the upper bases of the modal 

class and the two adjacent classes. Figure 11. 9. shows three such 

points h, i, j. 
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The general equation of a parabola with its axis paxallel to the 
y-axis is 

y 
 OC + PX + yX2. H. 17. 1. 

In Figure II. 9., take the origin at the point 0, namely, at the 
lower limit of the modal class. Let c equal the class interval and 
Aj. = OG and A2 = ED. When x = - c/2, y == 0; x = c/2, 
y = Al; x = 3 c/2, Y = Al. - A2- Substitute these values for 
x and y in II. 17. 1. and 

0 
 a - P (c/2) + y 6")
A 7)

.1 = a + P (c/2) + y (O' II. 17. 2. 

Al - A2 = (X + P (3 c/2) + y (9 

Solving these equations for oc, P, Y, 

5 Al + A2. P ==Al A, +A2 II. 17. 3. 
8 c y 2 C2 

The maximum point on the curve y 
 a + Px + yx2 is found 
by setting 

dy/dx P + 2 yx = 0 IL 17. 4. 
d2y/dX2 2 y < 0 

From II. 17. 4., 
x - P/2 y II. 17. 5. 

y < 0 

Substituting the values for P and y from II. 17. 3. in IL 17. 5., 

X 
 Al c II. 17. 6. 
(Al +,A2) 

The quantity found for x in II. 17. 6. when added to the lower 
limit of the modal class is the approximate value of the mode, 
namely 

Mode + 0 II. 17. 7. 
(Al + A2) 

where 

13. lower limit of the class with maximum frequency.

Al fo - fj (See Figure II. 9.)

A2 
Of - f, (See Figure II. 9.)
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In Table 11. I., fo = 74, f, = 60, f, 
 29. Substituting these 
values in II. 17. 7., we obtain 

Mode == 39.5 + 14 \ 5 = 40.7. II. 17. 8. 
(14 + 451 

The graphical counterpart of the solution just given for finding 
the modeis as follows. Considerthe distributiongiveninTableII. 1. 

Y 

T- D 
7 

60 h, 0

C-\


50 

4 0 	 CR 

30 	 E 
J 
z 	 + 

20 

10­

<


34.5 	 39.5 44.5 49.5 

Speed in Miles Per Hour 

FIGURE II. 9 

GRAPHICAL SOLUTION


FOR FINDING THE MODAL VALUE OF A SET OF OBSERVATIONS


From this table select the modal class and the class adjacent to it 
on either side of it and for these three classes plot on graph paper 
these three frequency rectangles as illustratedin Figure II. 9. 



38 STATISTICS AND HIGHWAY TRAFFIC ANALYSIS 

Connect the points G and E with a straight line and the points 0 
and D with a straightline. Then from the point of intersection of 
these two lines drop a perpendicular to the horizontal axis. The 
number read on the horizontal scale at the point where this per­
pendicular cuts the horizontal scale is the graphical solution of the 
mode. In this case it is 40. 8. Comparing the value of the mode 
found graphically with the value ofthe modejust found arithmetic­
ally, it is seen that the difference is 0.1, which is negligible. 

It is not difficult to show, that the abscissa of the point of inter­
section of the lines joining OD and GE is 

Al 
X = (A' + A) c 

which proves that the graphical solution given is theoretically the 
same as the analytical. 

It is obvious that for most practical purposes since graphically 
the value of the mode can be obtained with slight error the 
graphical solution of the mode will suffice. This result means that 
the most probable speed ofa vehicle at the pointobservedis 40.7 miles 
per hour. In other words, more vehicles pass this point at aspeed 
of 40.7 miles per hour than at any other speed. 

II. 18. Median. The median of a variableis a numberwhichis such 
that half of the measurements have a value less than it and the 
otherhalf have a value greater than it. It is thus the abscissa of the 
point the vertical through which divides the total area under the 
frequency curve or frequency rectangles into two equal parts. To 
compute the median of a sample set of n values of the variable, 
computethe abscissa of a point, the vertical through which divides 
the total area of the frequency rectangles into two equal parts. 

Illustration: 

From columns (1) and (6) in Table II. I., and from Figure II. IO., 
it is seen that the sum of the frequencies (sum of the areas) of the 
classes up to X = 34.5 is 106 and the sum of the frequencies (sum 
of the areas) of the classes up to X = 39.5 is 166. But one-half the 
total frequency is 150 which is between 106 and 166. Hence the 
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FIGURE II. 10


MEDIAN VALUE OF OBSERVED VEMCLE SPEEDS


median value, by definition, lies between X = 34.5 and X 39.5 

at a point which is the same proportion of the distance from 

X 
 34.5 to X = 39.5 as 150 is from 106 to 166. 

Symbolically it is seen that 

Median + jn/2 - fel, c II. 18. 1. 
fm 

where 

11 
 lower bound of class in which median value falls. 

n 
 total frequency. 

f,,, == cumulative frequency to lower limit of class in which 
median value lies. 
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f . = frequency of class in which median lies.

c == length of class interval.

Hence for the given distribution


Median = '34.5 + 150 - 106 5 
 38.2 II. 18. 2. 
60 

IL 19. Quantile8: Quantiles are location and division numbers. 
They, like the median, dividethe distributionintosections. There 
are many quantiles, but we shall mention and briefly discuss only 
those frequently used. There are the quartiles (quarters), quintile8 
(fifths), decilm (tenths), and percentiles (hundredths). The method of 
finding them is similar to that of finding the median. 

A quantile value (or percentile) is a number such that the speci­
fied quantile (percentage) proportion of cases have a measure less 
than it and the remainder have a measure greater than it. Sym­
bolically, 

1k n - f,
Quantile = 11 + c II. I9. I. 

where 
I lower bound of class in which quantile value falls. 
k proportion of cases below specified quantile value. 
n = total frequency. 
fp% 
 cumulative frequency to lower limit of class in which 

quantile value lies. 
fq == frequency of class in which the specified quantile value 

lies. 
To illustrate: It is desired to find the lower quartile Q, or the 

25th percentileand the upper quartile Q3 or the 75th percentile. 
In the former case, k ',4 and from columns (1) and (6) of Table 

IL I., it is seen that f,
1
 = 43 and fq = 63 and 13L = 29.5. Hence 
II. 19. 1. becomes 

Q1 = 29.5 + 
 
(1

4 
(300)

63 
- 43 

5 ;:-- 32.0 11.19.2. 

In the latter case, k == 
4
3, it is seen that fj
 =. 166 and fq = 74 

and 1, = 39.5. here II.19.1. becomes 
43 (300) - 166 

Q3 = 39.5 + . 5 
 43.5. II. 19.3. 
74 
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These two values mean that 25 per cent of the vehiclesat the ob­
served point had a speed less than 32.0 miles per hour and 25 per 
cent of the vehicles had a speed greater than 43.5 miles per hour. 

If it is desired to know the 4th decile, then k 
 0.4 in IL 19. L 
and if it is desired to know the thirty-second percentile, then 
k 
 0.32. In other words the 4th decile means a speed such that 
0.4 of the vehicles have a lower speed and 0.6 a higher speed and 
the thirty-second percentile means a speed such that 32 per cent 
have a lower speed and 68 per cent a greater speed. 

Having found the values of the arithmetic mean, the median 
and the mode, what are the differences in their values and mea­
nings ? It can be proved that the median value always lies between 
the arithmetic mean and the mode such that either 

X :

 Median :9 Mode or

Mode :::
 Median :

 Y IL 19.4.


For the distribution of Table IL L, it was found that 
 38.2., 
the Median 
 38.2., the Mode 
 40.7 miles per hour. The apparent 
equality of the median and arithmetic mean in this sample is due 
primarilyto grouping and sampling errors and to some extent due 
to experimental error. The modal value of 40.7 reveals that a 
greater proportion of the vehicles at the point observed travel at 
a speed greater than the probable or expected speed of 38.2 miles 
per hour. This observed tendency is important and can and must 
be explained from a subjective study. The other results show that 
25 per cent of vehicles travelled with a speed less than 32.0 miles 
per hour and 25 per cent with a speed greater than 43.5 miles per 
hour and 50 per cent with a speed of from 32.0 to 43.5 miles per 
hour. The lower 25 per cent had a range in speed of 32.0 - 14.5 

 17.5 miles per hour, the middle 50 per cent had a range of 
43.5 - 32.0 = 11.5 miles per hour, and the upper 25 per cent had 
a range in speed of 74.5 - 43.5 
 31.0 miles per hour. Similarly, 
the second 25 per cent had a range in speed of 38.2 - 32.0 = 6.2 
miles per hour and the third 25 per cent a rangeof 43.5 - 38.2 = 
5.3 miles per hour. These results indicaterather plainly a lack of 
stability and uniformity in speeds due to drivers, type of vehicles, 
and topography at point observed. 
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II. 20. Geometric Mean. The geometric mean of a set of n positive 
measurementsis the nth root of their product. If Xi (i = 1, 2, . . .. n) 
are the n values for a variable X, the geometric mean, 

n I I 

G.M. 
 (rlxl)- II.20.1.I n = (XI-X2 X,)n-

where 11 is the symbol for the product. 
For a frequency distribution, 

G.M. 
 (Xfl- -Xf ..... Xfi ...... X kfk) U II. 20. 2. 

where yif, = n. It is significant that the 
1 

log. G.M. fl 109X1 + f2 109X2 + + fk 'OgXk 

n 
k 
It f, log Xi 

11.20.3. 

This means that the logarithm of the geometric mean is the arith­
metic mean of the logarithms of the measurements. Recalling the 
relationship between relative frequency and probability, it is 
evident that as the number of measurements is indefinitely in­
creased the logarithm of the geometric mean becomesthe probable 
or expected value of the logarithm of the variable X. 

For analyzing a frequency distribution, the geometric mean has 
no immediate value. The geometric mean is the average of a set of 
rates and is the only average which is the average of a set of rates 
or the average of a set of things that behave like rates. Two ex­
amples will illustrate this property: 

(1) A city had a population in 1900 of 100,000 and in 1910 of 
120, 000. What is the average annualrate of increase in population? 
This problem is analogous to a problem in compound interest 
where the amount, principal, and time are known and the rate of 
interest is to be found. Hence 

P. 
 Po (I + r)n II.20.4. 
where


Pn 
 the population at the end of n years.

Po 
 the population at the beginning of the period.

n = number of time intervals.
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Substitutethe above values in 11.20.4., then 
120,000 
 100,000 (1 + r)10 

Solving for r, it is found that 

r 
 .0184 = 1.84% change per annum. 

(2) Given the information shown in tabular form: 

Native Born Foreign Born Ratio of Ratio of 
Community Inhabitants Inhabitants Foreign Born Native Born to 

to Native Born Foreign Born 

A a = 9000 c = 4500 c/a = 50% a/c 200% 

B b = 2000 d = 4000 d/b = 200% b/d 50% 

It may be shown that the arithmetic mean is not the average 

rate of increase. 

The arithmetic mean of the ratios of Foreign Born to Native 
born is 

50% + 200% c/a + d/b cb + ad 
= 125% = - ­

2 2 2 A 

The arithmetic mean of the ratios of Native born to Foreign 
born is 

200% + 50% a/c + b/d ad + bc = 125% = 

 =-­
2 2 2 cd 

Since the product of these two results is not unity or I 00 %, they 

axe illogical and the arithmetic mean is not the proper average to 
use. 

The geometric mean of the ratios of Foreign born to Native 
born is 

G.M. = V.50 -2.00 = 1.00 == 100 % = Y
/a-- d/b = Ycd/ab. 

The geometric mean of the ratios of Native born to Foreign 
born is 

G.M. 
 F2.00 -.50 
 1.00 I00 % Va/c -b/d = Yab/cd 
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The product of these two results is unity or 100%. 
c + d 4500 + 4000 8500 

Now 
 --+ b 9000 + 2000 11000 = .7727 = 77.27% and 

a + b 9000 + 2000 11000 
1.2941 
 129.41 %.


-+-d 4500 + 4000 8500 

But c + d.a + b I and .7727 times 1.2941 
 1. 
a + b 
- -+d
 

Since the product of the ratios mustbe unity, it is seen that the 
geometric mean is ae average rate. 

II. 21. Harmonic Mean. The harmonic mean of a set of measures 
is the reciprocal of the arithmetic mean of the reciprocals of the 
measures. 

Symbolically, if H M. is the harmonic mean, 

H.M.
' II. 21. 1. 
f1/X1 + f2/X2 + + fk/Xk 

To illustrate: Suppose we have a vehicle that travels 25 miles 
per hour for 20 miles, then 30 miles per hour for 10 miles, then 
50 miles per hour for 50 miles, then 40 miles per hour for 10 miles 
and finally, 12 miles per hour for 10 miles. What is the average 
speed of this vehicle for the I 00 miles travelled? It is the harmonic 
mean, namely, 

H.M. = 100 
20 (1/25) + 10 (1/30) + 50 (1/50) + 10 (1/40) + 10 (1/12) 


 31.1 miles per hour. 
This average speedmay be found by an arithmeticmean method 

if weights are properly chosen. If X' is the symbol for the average 
speed for an arithmetic mean method, 

251(.04) (20))+301(.033) (10))+501(.02)(50)1+401(.025)(10))+121(.083)(10)) 

3.21

25 (.8) + 30 (.333) + 50 (1) + 40 (.25) + 12 (.833)


3.21 
20.000 + 9.999 + 50.000 + 10.000 + 9.996 

= 31.1milesperhour
3.21


where 0.8, 0.333, 1, 0.25, and 0.833 axe the weights.
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The latter method, while it solves the problem, is not as direct and 

simple as the harmonic mean. Of all the averages, the harmonic 

mean is the only one that is the average time rate orae average 

of things that behave like time rates. 

II.22. RootMeanSquare.TherootmeansquareR.M.S.,aoftencalled 

thestandarddeviationin statisticsis similarto theradius ofgyration k 

in mechanics.The radius of gyrationof the area under a frequency 

curve about the ordinate through the center of gravity of that 

area is, in fact, equal to a. 
The physical meaning of radius of gyrationis that it is a distance 

such that if all the mass of a body (or area) were concentrated at a 

point that distance from an axis of rotation it would have the 

-same rotational effect as the actual distributed mass (area). It is 

also the root meansquare of the radial distances of a set of n equal 

particles from an axis. In the same way, a, the standard deviation 

,of a frequency distribution (area) thought of as a set of n equal 

particles of area is the square root of the arithmetic mean of the 

squares of the radial distances of the several particles from the 
centroidal axis, that is, it is the R.M. S. as well as k with respect 

to the centroidal axis. 

It is believedthat a review of the significanceof second moments 

and the radius of gyration k in mechanicswill help to understand 

the correspondingterms in statistics. 

Let A be any area and YY an axis through the centroid 0 as 

shown in Figure II. 1 1. 

Let dA represent an element of area and let x be its distance 

from the centroidal axis YY. 
The moment of inertia Iy is by definition the sum of all the 

x2 dA, that is, 

IY = f6.x 2 CIA II. 22. 1. 

and the radius of gyration, 

k 2 = IY 11. 22. 2. 
A 

If the moment of inertia of an area with respect to a centroidal 
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axis is known, the moment of inertia with respect to a parallelaxis 

may be found as follows: 
In Figure 11. II., let Y'Y' be any axis parallel to YY and at a 

distance d from YY. 

y y 

d 
X 

dA 

of 0 

d 

y y 

FIGURE II. 11 

MOMENT OF INERTIA

OF Ax AREA W RESPECT TO A PARALLEL Axis


The moment of inertiaof the element dA about Y'Y' is equal to 
(x + d)2 dA and lyI for the total area is 

ly'=fA(x + d)2 dA 

)0 dA + 2 d dA + d2 dA 11.22.3. 
=1 fAX fA 

= ly + Ad2 
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since dA = Ai = 0. 
JAX 

The fact that fAxdA 
 0 may be comprehended if it is re­

membered that for every element dA on the right, there is an 

element (d.A)' at a distance x' to the left, such that x' (dA)' = xdA. 

In other words, we may think of the area as being balanced about 

the centroidal axis. 

The frequency diagram in statistics may be treated in the 

same manner as an area is treated in mechanics. The notation is 

slightly different and so is the point of view and interpretation as 

is shown in Figure II. 12. Oth6rwise, the procedure is the same. 

V 

unit 

xi-X 
X 

FIGuRF, IL 12 

Fp.i
QuENcy DIAGRAM 

Using the notation shown in Figure II.12. 
a2=k2= 12 II.22.4. 

I/n) (xi - X-/ 

This may be written in the form 

n 
2 a2 = 2 k2 
 (1/n2) Zj (Xi - Xj)2 II.22.5. 

1 

We thus see that the standard deviation is (1) the square root 

of the arithmetic mean of the squares of the differences between 

the measurements and their arithmetic mean and (2) proportional 
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to the square root of an average of the square of the differences 
betweenthe measurementstakentwo at a time where the constant 

of proportionality is (I/Y2
. 
In the continuous case, we may write 

E 2 E (x - y)l dF (x) dF (y)
0
0 

f dF (x) dF (y) fX2 - 2 xy + y2l
=f 

=fX2 dF (x)f - 2 dF (x) 'O dF (y)
X y 

+fdF (x) y2 dF (y)
f 

2[t'- 2 2 II. 22. 6. 

The square of the standard deviation is the variance. It is also 
the second moment about the mean. Variance is half the mean 
square of all possible variate differences without reference to 
deviations from a central value. 

The arithmetic mean of the squares of the differences between 
the measurements and their arithmetic mean is equal to the arith­
methic mean of the squares of the measurements minus the square 
of the arithmetic mean of the measurements. 

Expressed mathematically, it is, 

E (X 5
)2 EX2_ EX
2 
JI.22.7. 

n n n I 

which, if the measurements are 3, 5, 6, 9, 12 becomes 

(3 - 7)2 + (5 - 7)2 + (6 - 7)2 + (9 - 7)2 + (12 - 7)2 

5 

32 + 52 + 62 + 92+122_(3+5+6+9+12 2 

5 5 ) , 

where 7 is the arithmetic mean of the measurements. This, upon 
simplification becomes 10 = 59 - 49 == 10 which demonstrates 
11.22.4. 
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Also 

1(3-3)2 + (3-5)2 + (3-6)2 + (3 - 9)2 + (3-12)2 + (,5-3)2 

* (5 - 5)2 + (15 - 6)2 + (5 - 9)2 + (5 - 12)2 + (6- 3)2 + (6-5)2 

* (6- 6)2 + (6- 9)2 + (6 - 12)2 + (9 - 3)2 + (9-5)2 +(9-6)2 
* (9 - 9)2 + (9 - 12)2 + (12 - 3)2 + (12 - 5)2 + (12 - 6)2 

* (12 - 9)2 + (12 - 12)21 '. (5) (5) 
 52050 = 20 
-- 2 (10). 

Hence 2 a2 = j:jj (Xi - Xj)2 becomes 2 (10) = 20 

which demonstrates II.22.5. 

In case we have k values of Xi and each value occurs several 

times, or in case we have a frequency distributionwhere Xi is the 

class mark of the ith class and f, is the frequency of the ith class, 
it is convenient to write 

i fi (Xi 
X) 

2 
I fj Xi

2 
I ft Xi 

2 

II.22.8 
n n n 

Considering the limit definition of probability, namely, 

Limit fl/n 
 pi, we have 

n- 00 E [(X - E (X)2 E (X2 [E (X)] 2 11.22.9. 

which in words is the theorem: The expected value of the square of 

the deviation of the variablefrom the expected value is equal to the ex­

pected value of the, square of the variable minus the square of the ex­

pected value of the variable. 

In the special case when the class intervals are all equal, we may 
use the value of Xi from II. II. 7. in 11. 22.8 and then 

k - 2 2y1fi (Xi_ X n 
2 I f, X12


a C, ff Xi


n II.22.10. 
n n 

To illustrate, consider the distributiongiven in columns (1) and (2) 

of Table II. 1. and the tabulation as shown in Table II.6. 

Making use of formula II.22.10., namely, 

a = CVEfS2 _ 
Zfs)2 

_n 
_n 

where now X 
 S and x = s 
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Table 11.6. 

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 

1939, IN OAXLAWN, ILLINOIS ON U.S.H. 12 AND 20 AT APOINT ONE Mrr EAST 

OF HARLEM AVE. 

Speed in mile8 Number of 
per hour Vehicles 

S f 8 fS f§2 

70-74 0 6 0 0 
65--69 0 5 0 0 
60-64 2 4 8 32 
55-59 15 3 45 135 
50-54 14 2 28 56 
45-49 29 1 29 29 
40-44 74 0 0 0 
35-39 60 - 1 - 60 60 
30-34 63 - 2 - 126 252 
2&-29 29 - 3 - 87 261 
20-24 6 - 4 - 24 96 
15-19 8 - 5 - 40 200 

300 - 227 1121 

Substitute the indicated values from Table IIA in II.22.10, 

then 

.5 VI 121 227
2 

30-0 300 

5 V 3.7367 - 0.15726 = 5 (1.779) 

8.9 miles per hour. 

This means that we would expect the speed of a random vehicle 

to be somewhere between 38.2 - 8.9 and 38.2 + 8.9 miles per hour, 

namely, between 29.3 and 47.1 miles per hour. 

From an examinationof the distribution of speeds, we find that 

approximately 71 per cent of the vehicles had a speed between 
29.3 and 47.1 miles per hour. Hence this relative frequency tells 

us that we axe approximately 71 per cent certain that a random 

vehicle will pass the intersection with a speed between 29.3 and 
47.1 miles per hour. 
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If on the other hand, we use the expected speed of 38.2 miles 

per hour as our estimate, it is 71 per cent certain that we will be 

in error by at most afX_ == 8.9/38.2 = 23.3 per cent. On the other 

hand, it is 29 per cent certain that the error is at least 23.3 per 
cent. 

This indicates that there is marked variability in speeds and 

there does not appear to be a typical speed at all for this point on 
the highway. 

IL 23. Centra HarmonicMean. The centra harmonic mean is a meas­

ure of relative dispersion. It is the arithmetic mean of the squares 

of the measures from an arbitraryorigin dividedby the arithmetic 

mean of the measures. Symbolically if C.H.M. is the centra har­
monic mean, then 

n n 
C.H.M. X?/ xi. 11.23.1. 

The centra harmonic mean per se is of very little use today. 

However, a quantity similar to it, namely the coefficient of vari­

ability is useful as a measure of relativedispersion or a measure of 

per cent of error. If C.V. is the symbol for coefficient of variability, 
then, by definition 

n 	 n 

i (Xi - X), El xi a 
C.17. 	 I1.23.2. 

n n X 

In II.22. the 	CY. was interpreted for the distribution given in 
Table IL L 

IL 24. Mean or Average Deviation. The mean or average deviation 

from an average is the A.M. of the deviations treating them all as 

positive. The deviations may be taken from any average, but the 

mean deviation is least whenthe median is the origin. 

In case of a normal distribution with origin at the arithmetic 

mean or median, the mean deviationis the abscissa of the centroid 

of area under the right hand half of the frequency curve and its 

value is 0.7978 a = 0.8 a approximately. Assume the frequency 

for each class concentrated at the center of class as shown in 
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Figure II. 13. Let the distances of these centers from the center of 
the class containing the median be dj, d, ..... 

f 

cm 

-d2­

dj 

0i X

FiGURE II. 13 

AIEAN OR AVERAGE DEviATioN OF A SET OF OBSERVATIONS 

and let the correspondingclass frequencies be f,, f2l ... so that the 
sum of moments about the median is f1d, + f2d2 + - - - + fndn-

Ignore the class containingthe medianfor the present. All theprod­
ucts whose deviations lie below (to the left of) the median have 
deviations tooshort by anamount C andthose above (to the right) 
are too long by an amount C. Next consider the sum of the devia­
tions bestow the median class and above the median class. If N" is 
the number of observations above and Nb the number below the 
median class, then we have as a first correction 

(Nb - NO C. II. 24.1. 
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If Nrn is number of observations in the median class and if we 

assume these Nm observations uniformly distributed over the 

interval, then (.5 + Q N. cases are below and (.5 - Q Nm are 

above the median. With a uniform distribution, the sum of these 

deviations below the median is 

(.5 + C)2 Nm and above the median (.5 - Q2 Nru 
2 2 

Hence the sum of all the deviations of the Nm values is 

(.5 + 	 C)2 N., + (.5 - C)2 N., = (.25 + C2) Nm. II.24.2. 
2 2 

which is the second correction. 

Let us now find the mean deviation from the median for the 

distributiongiven in Table II.I. 

Table II. 7. 

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16, 
1939, IN OA KI AWN, ILLINOIS, ON U.S.H. 12 AND 20 AT A POINT ONE MILE EAST 

OF HARLEM AVE. 

X = 	 S f X = 8 fjSj* 

70-74 0 7 0 
65--69 0 6 0 
60-64 2 5 10 
55-59 15 4 60 
50-54 14 3 42 
45-49 29 2 58 
40-44 74 1 74 
35-39 60 0 0 
30-34 63 - 1 63 
25-29 29 - 2 58 
20-24 6 - 3 18 
15-19 8 - 4 32 

300 n 	 415 

The symbol Isl means the numerical value of s which is always positive or zero. 
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Correction (1): (Nb -N,) C= (106 - 134) (1.2)
 - 33.6 
Correction(2): (.25+C2)Nm=(.25+1.44)(60)= 101.4 
Sum of deviations for classes other than median class 415.0 

Sum of all deviations 482.8 
482.8

Mean Deviation - = 1.609 class intervals 
300 

8.05 
 8.1 miles per hour. 
This means that the expected value of the difference between 

the speed of a vehicle and the median value of speeds is 8.1 miles 
per hour. 

Given N values. Choose a certain number as origin such that x 
of the values will be greater than this number. Then N - x will 
be less than the selected number. Let the deviations from the 
selected number (average) as origin be A. Displace the original 
origin by K units so that it is exceeded by only x - 1 values. Then 
N - (x - 1) of the values will be less than the new number. By 
this change, the sum of the deviations in excess of the selected 
number is decreased by Kx, while the sum of the deviations less 
than the selected number is increased by (N - x) K. If A' is the 
new sum of deviations, then 

A' A + (N - x) K - I%'-x and 
A' A + (N - 2 x) K. 
If x = N/2; 4' = A. 
lf x > N/2; A' < A. 

This proves that the sum of the numerical values of the devia­
tions from the median is a minimum. 

II. 25. Moments and Mathematical Expectation of Powers of a Vari­
able. 

The moments of a distribution are the expected values of the 
powers of the stochastic variable which has the givendistribution. 
The term "moment" has been taken over by the statistician from 
mechanics. In mechanics, moment is a measure of a force with 
respect to its tendencyto produce rotation. In statistics moments 
characterize the parameters of the distributionlaw which are the 
properties that describe for interpretation and meaning the law of 
behavior of the attribute that is being measured and studied. 
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The late Karl Pearson (Biometrika, Vol. 9, pp. 1-10) has shown 

that all the constants of a frequency distributionare expressible in 

terms of higher productmoments. In the case of two variates, they 

are defined by 
n 

Vq, q' 
-- yij fplj X1q Yjq') II.25.1. 
1 

for an arbitrary origin. If the origin is at the mean, namely, at 

P (-x, -y), then 

yij ( Pij (Xi _ -)q (yj )ql
11% q, 
 I x y II.25.2. 

In case of a single variable, the k th moment of a continuous 

variable x about an arbitrary origin denoted by vk is 

b 

,vk = E (Xk) =
- Xk f (x) dx II.25.3. 

and in the case of a discontinous variable x 

n 
'Vk = E (Xk) Epi Xjk. II.25.4. 

As has been seen, the first moment about an arbitrary originis 

the probable or expected value and in case of a sample it is the 

arithmetic mean of the x values. 

The k th moment of the variable x about an arbitrary point a is 

defined as 
b 

E [(X - a)k] 
f- (x - a)k f (x) dx II.25.5. 

or 

E [(x - a)k] (xi - a)k pi. II.25.6. 

If a is the arithmetic mean -X of x and if 
Lk is the symbol for the 

k th moment about the mean, then 

b 

ilk= E [(x - 3E)k] = E [(x - vj)k] =f (X - V1)k f(x) dx II.25.7. 

or 

Ilk = E [(x - Vl)k] 
 Y_,pi (Xi - VI)k. II.25.8. 
1 

It is not hard to see that CF2­
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It is easy to show that the moments about the mean can be ex­

pressed in terms of the moments about an arbitrary origin. These 

relations are: 
k b 

[tr 
 z! pi (xi - VIY =f. (x _ Vj)r f(x) dx II.25.9. 

Specifically: 
PO 
 

Ili 
 0 

f12 
 V2 - "I2 


'3 
 V3 - 3 VI V2 + 2 v,3 

P-4 = v4 - 4 v3 v3 + 6 v.2V2 - 3 VI4 II.25.10. 

............................ 

r r! 
tLr= VI)l vr-, , where 
 . . namely the, 

i! (r - i)!
0 
i) 

number of combinations of r things taken i at a time. 

For a sample 

k 

Vr Zi ft XiUn
1. 

k 

and 	 [L, 1i fi (Xi - X)r/n. II.25.12. 
I 

Now consider the translation x'- X - X0, and if vr 
 the 

rth moment of x', then 

k 

k Zi f, (xi)t 
V, 
1,i f, (Xi - X,)'/n = 1 - , Vr II.25.13. 

I n 

and similarly if x 
 X-XO and v" is the rth moment of x r 
c 

k k

y,,f, (cx)r er Z if, Xr


Vr= II.25.14. 
n n 

Hence: 

[Ir (- Vi) Vr_1 II.25.15. 
0 1 
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and 

cr JJ.25.16. 

To illustrate: Consider the distribution of Table II.I. and find 
thefirst four moments about the mean using 11.25.10 and II.25.16. 

Table II.S. 

SPEED IN MILES PER HOUR OF FREE MOVING VEHICLES ON SEPTEMBER 16, 

1939 IN oAxLA-,vw, ILLINOIS, ox U.S.H. 12 AND 20 AT A POINT ONE MILE EAST 

OF HARLEM AVENUE 

S f 8 fS fS2 fS3 f,4 

70-74 0 6 0 0 0 0 
65-69 0 5 0 0 0 0 
60-64 2 4 8 32 128 512 
55-59 15 3 45 135 405 1215 
50-54 14 2 28 56 112 224 
45--49 29 1 29 29 29 29 
40-44 74 0 0 0 0 0 
35-39 60 -1 -60 60 -60 60 
30-34 63 -2 -126 252 -504 1008 
25-29 29 -3 -87 261 -783 2349 
20-24 6 -4 -24 96 -384 1536 
15-19 8 -5 -40 200 -1000 5000 

300=n -227 1121 -2057 11933 

From Table II.S. 

VO 

VJLI/ - 227 = - 0.75667 
300 

1121 
V211 
 - 3.73667300 

- 2057 
V311 = 
 
 6.85667300 

11933 
V4/1 = 39.77667300 
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Hence from II.25.10 and II.25.16., it is found that 

[Lo 

[I, = 0­


tL2 
 c20211 - V1112) = 25 (3.73667 -. 57255) = 79.1


tL3 = C3 03" - 3 VI" V2" + 2 vj'13) 
 125 [- 6.85667 
- 3 (- 0.75667) (3.73667) + 2 (- 0.75667)q 
 311.5 

114 = O 041' - 4 vlf 1 'V3" + 6 ,,"2 V21' - 3 VI/14) 


 	 625 [39.77667 - 4 0.75667) (- 6.85667) + 6 (0.75667 )2 

(3.73667) - 3 0.95667)4] 18342.1 

It is also useful to find 
2 

p2 M 97032.25 
1 3 494913.67 0.196 II.25.17. 

112 

and 

114 18342.1 
P2 
 
 = 2.93. II.25.18 

IZ2 	 6256.81 

p, is an index of skewness and is useful to compare the intensity 

of the departure from symmetry of a distribution with another 

distribution. If the distributionis symmetrical, p2 has the value 

zero. 

P2 is an index of kurtosis (flatness) and is sometimes used to 

determine whether a given distributionis more flat or less flat than 

a corresponding "normal" distribution. 
P21 and P22 are useful for determining which curve of a set of 

curves is indicated by the data as a useful law of behavior. The 

theory attached to these concepts was developed by the late Karl 

Pearson and will be discussed brieflyin Chapter III. 

II. 26. 	Relation Between Means. For positive numbers, 

XI < X2 < . . . < Xk, 

xi < H.M. < G.M. < A.M. < R.M.S. < C.H.M. < Xn-

II. 27. Desirable Properties of An Average. 

(a) An average should be precisely defined. 

(b) An average should be based on all observations. 
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(c) 	 An average should possess some simple and obvious proper­
ties to render its general nature comprehensible: it should 
not be too abstract in mathematical characterization. 

(d) An average should be possibleof easy and rapidcalculation. 
(e) 	 It should be as little affected as maybe possible by fluctua­

tion8 of sampling or by sampling errors. 
(f) 	 The measure chosen shouldlend itself to algebraic treatment 

and its basis should be concordant with the basis of the 
problems to be analyzed. 

These properties applied to the mean, median, and mode, geo­
metric mean, and harmonic mean are: 

I. ArithmeticMean. The A.M. satisfies a, b, c, d, e, f. The arith­
metic mean has the following properties. 

(a) 	The sum of the deviations from the mean, taken with their 
proper signs is zero. 

(b) 	The mean of a whole series can be readily expressedin terms 
of the means of its components. 

(c) 	The mean of all the sums or differences of corresponding 
observations in two series (of equalnumbers of observations) 
is equal to the sum or difference of the means of the two 
series. 

(d) 	The sum of squares of the deviations from the arithmetic 
mean is a minimum. 

IL Median. The median satisfies (b) and (c) but the definition 
does not necessarily lead in all cases to a determinate result. The 
median is easier to compute than the arithmetic mean. The arith­
metic mean is superior to median in lending itself to algebraic 
treatment. No theorem for median exists similar to (b) for mean 
and likewise to (c). The medianhas the, following advantages over 
the mean: 

(a) 	It is very readily calculated: a factor to which, however, as 
already stated, too much weight ought not to be attached. 

(b) 	It is readily obtained without necessity of measuring all 
objects to be observed. 

(c) 	 Sum of the deviations from Median, all > 0, is a minimum. 
III. Mode. What wewant to arrive atis the mid-value of the inter­

val for which the frequency would be a maximum, if the intervals 
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could be made indefinitely small and at the same time their 
number be so increased that the class frequency would run 
smoothly. A smoothing process is necessary; viz. that of fitting 
an ideal frequency curve of given equation to actual figures. 

IV. Geometric Mean. The geometric mean is used in averaging 
rates or ratios rather than quantities. 

(a) 	If the ratios of the geometric average to the measures it ex­
ceeds or equals be multiplied together, the product will be 
equal to the product of the ratios of the geometric average 
to those measures which exceed it in value. 

If XI < X2 < X3 < ... < Xk < G.M. < Xk+1 < X11+2 < ... < Xnl 

G 	 G G Xk+I Xk+2 Xnthen, 	- - - . . . . . - = - -- 11.27.1. 
XI X2 Xk G G -6 

(b) 	The geometric average of the ratios of corresponding obser­
vations in two series is equal to the ratio of their geometric 
averages. 

(C) 	 The geometric average of the series formed by combining n 
different series each with the same frequency is the geo­
metric average of the geometric averages of the separate 
series. 

V. Harmonic Mean. The harmonic average of a set of measure­
ments must be used in the averaging of time rates. 

Having shownthe initialprocedurenecessaryfor a statisticalana­
lysis, namely, how to summarize data and how to obtain summary 
numbers for the purpose of characterizing the law of behavior of 
the observedfacts, we shall now develop the necessary theory that 
is basic for the analysis and solution of traffic problems. 
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CHAPTER III 

STANDARD DISTRIBUTIONS

AND THEIR MATHEMATICAL PATTERNS


III. I-Objective. The purpose of this chapteris to explaintherelated 

problems of first ascertainingthe nature of a universeof events and 

second finding a mathematical model or pattern that fits the 

universe. From experience and intuition, we know that a sample 
will tell us something about the entire series of events, and that 

the larger the sample the more accurately it reflects the character­

istics of the parent universe. We reasonthat a mathematicalmodel 
of the sample, if the sample is large, will also be a model of the 

universe. Obviously, this fitting of mathematical patterns will be 

much easier if we know something about the types of universes or 

distributions of events we may expect to find. 

There are three of these theoretical distributionsthat constitute 

the basic patterns. They are, in the order of their discovery, the 

Binomial (James Bernoulli about 1700), the Normal (Demoivre 

about 1700, Laplace and Gauss about 1800), and the Poisson (B.D. 

Poisson about 1837). Other distribution patterns have been dis­

cussed by Gram (1879), Fechner (1897), Thiele (1900), Edgeworth 

(1904), Charlier (1905), Brun (1906), Romanowsky (1924), and 

others. These are in general either other approaches to, modifica­

tions, or generalizations of the three basic distributions. The most 

logical order to present these from the standpoint of clearnessis 

also the historicalorder of appearance. But before consideringthe 

first of these, the Binomial distribution, we shall discuss the ele­

ments that make up a distribution. 

111.2. The Elements of a Distribution. In order to'/.define and to point 

out the interrelationshipsof the elements that make up a distri­

bution, let us consider a trial like the throwing of a die. The result 
will be the happening or non-happening of a specific event such as 

the falling of the die with one spot on the top face. 

An event, of course, can be the occurrence of any attribute or 

61 
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characteristic as well as a happening. In traffic, for example, it 

could be the age of a driver, his seeing ability, the life of an auto­

mobile tire, the weight class of a truck, the volume of traffic, the 

speed of a vehicle, or any one of many other things. 
The happeningof a specific thing is called the Event E, and the 

non-happening is called the complementary event B. If the die is 

thrown a limited number of times (number of trials), we get a 

sample distribution of B's and B's. If the number of trials is in­
creased withoutlimit, the observed sample distributionapproaches 

the true or theoretical distribution of the univer8e or total popula­

tion of the events. 

There are thus two kinds of distributions: (a) the theoretical 

and (b) the experimentalor sample distribution. 

The Theoretical Di8tribution: In order to explain the theoretical 

distribution, let f t be the number of ways in which the event E can 

take place, f, the number of ways for the complementary event E, 

and n the total number of trials or happenings and non-happen­

ings. 

The probability that the event.E will occur is the ratio of the 

number of ways ft in which E can happen to the total number of 

possible and equally likely happenings and non-happenings. Let 

p or P (E) be this probability, then symbolically 

p = P (E) = ft/n 

Similarly, the total number of ways f, in which the event E can 

happen divided by n is defined as the probability (a-priori, true, or 

theoretical) that the event E will occur. Let q or P (E) be this 

probability, then symbolically 

n-ft ft 
q = P (E) = f,/n = = I __. III.2.2. 

n n 

In the case of a die, if E is the event of the die's falling with one-

spot on the top face and E is the event of the die's falling some 

other way, then ft
l, fc=5, n
6 

and 

p=P(E)=';q=.P(E)=1; and p+q=' +5 
1.
6 6 6 6 



63 STANDARD DISTRIBUTIONS 

Again if n is the total number of registered vehicles and ft is the 

number of light trucks, then 

p = P (E) 
n 

is the true probability that a vehicle is a truck. 

In general, let a be the number of times the eventE occurs, and 

let b be the number of times the event R occurs, these being the 

only possibilities. Then p = a/(a + b) is the probability that the 
event happens as specified - event E, and q 
 b/(a + b) is the 

probability that the event does not occur - event E. It follows that 

p + q 
 1, which simply demonstrates what we know intuitively 

that an event is certain to happen or not to happen. This also 

shows that both p and q are positive numbers. This is the Funda­

mental additive property in probability. This property is also re­

ferred to in the literature as the Rule of Complementation. 

Let us Dow suppose that one tosses a penny twice and wishes to 

find the probabilityof getting two heads. One might reason falsely 
that there are three possibilities: two heads, two tails, or one head 

and one tail. One of these outcomes is two heads, therefore, one 

might reason that the probability is "T, but this reasoning is false, 

for the events are not equally likely. The third event may occur in 

two ways for a head could appear on the first trial and the tail on 

the second, or the head could appear on the second and the tail on 
the first. There are really four equally likely outcomes or phases: 

HH, HT, TH, TT; and the correct probabilityis therefore f. The 

four events are independent and mutually exclusive. If two heads 

axe up, that is the only possible combination, for if a penny is 

heads up, it obviously cannot at the same time be tails up. This 

mutual exclusiveness does not always exist. Suppose that one 

wishes to compute the probability of drawing a king or a heart 

from a deck of cards. The chances might be Assumed to be 1I7 

since there are 4 kings and 13 hearts. But this is incorrect, for the 

drawing of a king does not exclude drawing of a heart. The king 

may also be a heart. 

The Experimental Di8tribution: The experimental or sample 

distribution is obtained from a number of observations of events. 
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Let fo be the number of times the event E is observed to happen 
and n the total number of trials or observations. The ratio fo/n is 

called the relative frequency of the event E and 1 - f0 is the rela­
nL) 

tive frequency of the event E. 
The obtaining of the numerical values of the relative frequencies 

fo/n is actually a very simple problem since it is essentially a 
problem of counting. The value of fo/n in contrast to the true 
probability varies with the number of observations or trials n. 
One might count all the traffic violations that occurred at an inter­
section during the passing of 5000 vehicles and find that there 
were no violations. In this situation, the observed fo = 0, n 
 5000 
and fo/n = 0/5000 equals zero. But if the violations occurring 
during the passing of 25000 vehicles were counted, it might be 
found that there were 4 violations, and now the observed fo = 4, 
n = 25000, and f./n 
 4/25000. Actually, we need to know the 
probable or expected value of such observed relative frequencies, 
fo/n. This is defined as the true probability p that the event E will 
occur and it is the limit that fo/n approaches as the number of 
trials (observations) is indefinitely increased. Expressed symbolic­
ally, if E (fo/n) is the symbol for the probable or expected value of 
an observed relative frequency fo/n, then 

E (f-0) 
 Limit f2) 
 p =p (E) III.2.3. 
n n-oo (n 

It should be notedthat in actual cases n need not be infiniteto give 
a practical result. It is, however, necessary that n is not small. 

The discussion just given may be summarized with two defini­
tions: 

Definition 1. If an event E can happen in ft cases out of a total 
of n possible cases which are all considered by mutual agreement 
to be equally likely, then the probabilityp = p, (E) that the event 
E will occur is definedto be (ft/n). Symbolically, p = P (E) = ft/n. 

Definition 2. If a series of many observations or trials is made, 
and if the ratio of the number of times, fo, the event E occurs, to 
the total number of observations, n, namely, fo/n, approaches 
nearer and nearer to a definite number, p, = P (E), as larger and 
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larger sets of trials or observations are made, then the probability 
of E is defined to be p. Expressed symbolically, 

Limit fo p = P (E) 
n-oo (n) 

An important question yet to be answered is: How much in 
error is fo/n from p for a given number of observations and how 
certain are we that this error is not exceeded? In other words, for 
a given degree of certainty, how large a sample of observations 
must be made to guarantee that a specified error will not be ex­
ceeded? 

This question is answered by the fundamental theorems of 
Bernoulli' and Cantelli2 and by the Bienayme - Tchebycheff 
criterions which will be stated without proof. 

III. 3. Bernoulli'8Theorem.l Bernoulli found that there is a definite 
number of observations that will give a certain assurance that a 
given error will not be exceeded. His finding is based upon a 
natural law which may be demonstratedby the tossing of a penny. 
If the penny is not defective, the probabilityp of getting a head is 

Let us now assume 4 heads have been obtained in 10 tosses. 
This relative frequency (fo/n) or 140is in error from the true or 
theoretical probability p of 'by 0.1. Let us next assume that we

2 

have tossed the penny 100 times and obtained 51 heads. The re­
lative frequency ' is now in error by only 0.01. With moretosses1 0 0 
there wouldbe a tendency toward a further decrease in error which 
would lead us to suspect that something may be known about the 
number of trials that are necessary in order to get from observa­
tions a probability that will differ from the theoreticalprobability 
p by less than an arbitrarily assigned positive quantity e, known 
as the experimentalerror. 

The next question to be answered is how certain are we that the 
error will not be more than e. The measure of our confidence that 
e is the maximumerror is indicated by attaching a probability to 
e. This probability is dependent upon the number of trials n. 

The probability -
 that e is not the maximum error is the com­
plement of the probability that e is the maximum error. This 
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probability, 1, is the measure of our lack of confidence that e is not 

exceeded and is called the level of significance. If -
 is the level of 

significance, then I - -q is the measure of our confidence or ability 

to prove that e is not exceeded. The number, Eta, is also some­

times called the risk. In common parlance, if we are 75 per cent 

certain of our result, we are 25 per cent uncertain, or in other 

words, the risk is 25 per cent. 

If we wished to find the size of sample necessary to give us a 

99 per cent guarantee that the relative frequency (fo/n) obtained 

would differ fromthetheoretical probabilityp fortheuniversebynot 

more that 0.03, e would be 0.03 and 7) would be 0.01. The value of 

0.01 for -
 would meanthat I per cent of the time it would be impos­

sible to explain the differencebetweenthe observed and the theore­

tical frequency other than that it just happened. In otherwords, it 

would mean that the odds are 99 to I in favor of finding at least 
one real reason for the existence of the difference other than that 

it was merely accidental. 

Having examined the underlying theory of Bernoulli's theorem, 

we will now state it more rigorously: For any arbitrarily given 

e > 0 and 0 < 7] < I there exists a number of trials no dependent 

upon both e and -
 tsymbolically no (e, 7])l such thatfor any single 

value of n > no (e, -
), the probability that the observed relative fre­

quency, (fo/n) of an event E in a series of n independent trials with 

constant probability p will differfrom, this probability p by less than 

e, will be greater than 1 - 77. 

Symbolically, this is written 

PfJf,/n-pJ<e)>1--
 for n>no. 111.3.1. 

The n>no inBemouRi'stheoremisgivenbythefollowingin­
equality: 

1 + 
n > no
 log,, + - III.3.2.

e2 e 

Example 1. Given e 
 0.01 and 7) = 0.01. Substitutingthese given 

values in the inequality III.3.2., we get 

1.01 I I 
n > no = c- log(3 - + -, whence n > no = 46613. 

.01)2 0.01 0.01 
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In this example, no 
 46613. However, n is any single number 

greater than 46613. 

Example 2. Given e 
 0.01 and 0.05. Substituting these 

given values in the inequality III.3.2., we find that 

1.01 I 1 
n > no - log, - + - whence n > no 
 30357. 

(.01)2 0.05 0.01' 

Hence no - 30357 and n is any single number greater than 30357. 

A comparison of the results of the two examples shows that re­

ducing the certainty from 99 per cent to 95 per cent reduced the 

size of the sample required from 46614 to 30358. 

Increasing the allowable experimental error will also decrease 

the size of the sample required. 

Example 3. Given e == 0.05 and 0.05. Substituting these 

given values in Ill. 3.2., it is found that 

1.05 1 1 
n > no = - log,3 _- + -, whence n > no = 1278.

(.05)2 0.05 0.05 

Under the conditions, n is any single number greater than 1278. 

The result of Example 3 means that if a random set of 1279 ob­
servations is taken, we are 95 per cent certain that the true probab­

ilityp for the occurrence of the event E will be between the values 
fo/n - 0.05 and fo/n + 0.05. This may be expressed symbolicallyas 

P f I fo/n - p I < 0.05 ) > 0.95 

for any single n > 1278. There are similar interpretations for ex­
amples I and 2. 

An examinationof Bernoulli's theorem shows that the number 

of observationsnecessary for a given result is totally independent 

of the true probability p and hence is independentof the theore­

tical distribution law. In other words, without knowing anything 

about the nature of the law of behavior, it is possible to determine 

the sample size for a specified accuracy and certainty. If, however, 

we have some knowledge of the law of behavior which is the case 
in nearly all practical applications, the size of the sample win be 

much smaller than indicated in Examples 1, 2, 3, - sometimes 

even less than 100. This will be made more apparent in later dis­

cussions. 
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For the sake of clarity, let us summarizethe various aspects of 
Bernoulli's theorem. This theorem is based upon the law that as n 
increases, the measure of uncertainty -
 decreases. It enables us to 
find for a fixed error e and measure of uncertainty -
 the size of a 
single n. This being the case, it is now possible to learn how large 
n must be so that the sum of all the decreasing measures of risk 
(the 7)'s) for all N's larger than n, is less than a selected -
 and an 
assigned error s. It follows, of course, that if the sum of the risks 
in question is less than -
, then any one of them is less than 7]. 

More precisely: Instead of there being any single n > no, for 
a given s and -
 there is a number of trials, N, which is such that 
the sum of the risks for all n's > N, is at most -
. The number N is 
found by Cantelli's theorem. 

III. 4. Cantelli's Theorem .2 Fora given s < 1, -
 < 1, let n > N (e, 
be an integer satisfying the inequality: 

2 2 
n > -e2 loge - + 2. IIIA. 1. 

With the value of n given by the inequality, the probability that the 
observed relative frequency (fo/n) of an event E will differ from the, 
actual theoretical probability p by less than e in the nth and all the 
following trials is greater than 1 - 7
. 

Thus Cantelli's theorem, as noted above gives the probability 
for all n's > N (e, -
), namely for n 
 N, N + 1, N + 2, . . ., that 
Ifo/n - p I < e. The complementaryprobabilityis the probability 
that at least one of the inequalities Ifo/n - p I < e is true where n 
may be equal to either N, or N + 1, or N + 2, ... Since these 
different possibilities form a set of mutually exclusive events it 
follows that the probability that at least one of the events has 
occurred is the sum of the probabilitiesthat that one and all the 
following events have occurred. 

Now, if Q (Q :< -
) is the probability of this complementary 
event then it is the probability that the experimental error is at 
most e in the nth and any or all of the following trials. 

If we know or specify any two of the quantities n, e, -
, the 
third may be found in terms of Bernoulli's theorem (III.3.2.) or 
Cantelli's theorem (III.4.1.). 
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Since the probability that the experimental error is at most e 

in any 8ingle number of trials greater than a given number no is 

more restricted than the probability that the experimental error 

is at most e, in all the number of trials greater than N, we would 

expect, as is the case, that more trials are necessary for the less 

restricted situation covered by the Cantelli theorem than are 

necessary for the Bernoulli theorem. 
It is important to note that in both Cantelli's and Bernoulli's 

theorems, the number of trials necessary is independent of the 
probability p that the event will happen as specified and hence 

is independent of the distributionlaw. In otherwords, the results 
are true as long as we are sure that the event will happen or will 

not happen, or speaking mathematically, so long as it is true that 

p + q ;-- 1 where q is the probability that the event will not 
happen as specified. 

If the value of p is known which is the same as saying that we 

know the distribution law, and n is also dependent on p then, in 

general, the number of trials found from theorems 111.3.2. and 

III.4.1. is much too large. This fact will be demonstratedlater. 

Example 1. Letting e = 0.01 and -
 = 0.01 as in example 1 

above and substitutingthese given values in the inequalityIIIA.I., 

2 2 2 2 
n > -log,- + 2 
 -log, - + 2, whence 

Z2 7) (0.01)2 0.01 

n > 152,021. 

In this example, N 
 n + I 
 152,022. Therefore in the 

152,022nd trial and all the following trials (and hence in at least 

one) we are assured that the observed relative frequency (fo/n) Will 

differ from the theoretical probability p by at most 0.01 and that 

it is (I - 7)) = 0.99 equals 99 per cent certain that this is true 

and only I per cent uncertain that this is true. 

Example 2. Let e P-- 0.01 and 0.05, then III.4.1. becomes 

2 2 
n > - log,-_ + 2, whence(0.01)2 0.05 

n > 119,832. 
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Example 3. Let, as in example 3 above, s 
 0.05 and 0.05. 

In this case, 111.4.1. becomes 

2 2 
n > __ log,, - + 2, whence n > 4796.CO.05)2 0.05 

The resultsof these exampleswhen compared with the minimum 

number of trials necessary when using Bernoulli's theorem show 

that Cantelli's theorem requires more trials. This is because Can­
telli's theorem gives a value for all n's greater than N while Ber­

noulli's theorem gives a value for any single n greater than no. In 

either case, as the number of trials is increased, the probability 

that the experimental error e has a specified upper limit becomes 
greater and greater, and -
 becomes smaller and smaller. 

The theorems of Bernoulli and Cantelli are based upon the idea 

that there is definite probability that the values of a stochastic 
variable will fall within a specified range. 

Another approach is to find the probability that a stochastic 
value taken at random will differ from some chosen value a by as 

much as a specified amount, D. This probability is given by the 

Bienaymg-Tchebycheff Criterion.3 

III. 5. The Bienaymg- Tcheb ycheff Criterion.3 This criterion is inde­

pendent of the form of distributionof given measurements and in 

addition is independentof theorigin. If X is the stochasticvariable 

which may assume the values Xi (i = 1, 2, . . ., n), and if pi (i 

1, 2, .. ., n) are the corresponding probabilities, where Z pi = 

and if a is any number (origin) from which the differences of the 

X's are measured, then 

D 2 = E (Xi - a)2 = Z pX? 5. 1. 

where xi 
 xi - a and D2 is the expected value of the squares of 
the differences of the X's from a. 

Under these conditions, it is found that, if 'X > 1, 

P Q, D) ;:

 1/),2 III.5.2. 

This expression, wherein (X D) means X times D and X equals the 

multiple of the differences D from the chosen number a, is the 

Bienaymg-Tchebycheff Criterion. 
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The criterion, to state it in words, says that the probability 

P Q, D) is not more than 1/X2 that a stochastic variable taken at 

random will differ from some chosen number a by as much as 

?, (), > 1) times the value of D. A very useful special case is when 

a is the probable or expected value. 

Example 1. If the probability P (X D) <.01 and z 
 .01, 
then for any a and p, X must be f FO-O 
 IO. It will be seen later 

that n must be greater than 250,000. 

Example 2. If the probability P (, D) :&-.05 and e 
 .01, 

then for any a and p, ?, must be f2_0. In this case n > 50,000. 

Example 3. If the probability P (X D) = -
 ;:

 .05 and s =.05, 

then for any a and p, ?, must be f 2-0. In this case n > 2000. 

These illustrations demonstrate that quite frequently the ex­

perimenter gathers more data than is necessary for the accuracy 

required. This makes the cost of the study unnecessarilylarge and 

demonstrates a lack of efficiency as well as an approach that is 

scientificallyunsound. 

If we have a limit definition of probability, Bernoulli's theorem 

is an immediate consequence thereof. In case we have any defini­
tion of probability p for the event E happening as specified, it is 

possible to prove Bernoulli's theorem by the use of the Bienaym6­

Tchebycheff criterion. This will be shown later in this chapter. 

In general, the evaluation of the probability of a given chance 

event necessitates the enumerationof all possible outcomes. These 

outcomes as shown by the tossing of a penny or the drawing of a 

card involve combinations and arrangements (permutations) of 

happenings. 

III. 6. Permutation8 and Combination& There are two basic prin­

ciples in combinations: 

1. 	If an event A can occur in a total of a ways and an event B 

can occur in a total of b ways, then A and B can occur in 

a + b ways, provided they cannot occur at the same time. 

2. 	If an event A can occur in a total of a ways and an event B 

can occur in a total of b ways, then A and B can occur to­

gether in a - b ways. 

These two principles can be generalized to take account of any 
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number of events. Three independent events A, B, or C can occur 
in a + b + c ways and three events A, B, and C can occur to­
gether in a -b -c ways. 

These ideas may be illustratedby letting A represent the draw­
ing of a heart from a deck of cards and B the drawing of a spade. 
Since there are 13 hearts, there are 13 ways of drawing a heart, 
and likewise for spades. The number of ways in which a heart or 
a spade can be drawnis 13 + 13 
 26. The second principle is also 
illustrated by the drawing of a heart and a spade together. There 
are 13 .13 ways of doing this, for with any one of the 13 hearts we 
may put one of the 13 spades, and with any one of the 13 spades, 
we may put one of the 13 hearts and so on. 

A more general illustration of the second principle is that of a 
room in which there are n seats and x individuals to be seated, and 
where x < n. We wish to know, in how maydifferentways (arrange­
ments or permutuations) these x individualsmay be seated in the 
room. To find out we may proceed as follows: Assume that all the 
x individuals are outside the room. The first one to come in has n 
choices. He seats himself. When a second individual comes in, he 
has (n - 1) choices, or one choice less than the first individual. 
For the third individual there are (n - 2) choices, or one less than 
for the second person. Hence, there are n (n - 1) (n - 2) choices 
(arrangements or permutations) for the first three. This illustra­
tion brings out the fact that permutationshave to do with single 
items or groups of items treated as units and that the choice for 
each succeeding individual (item or group) is reduced by one. 

If we continue until all the x individuals are seated and if np" 
is the number of choices, then 

.p. = n (n - 1) (n - 2) (n - 3) ... (n - x + 1) II1.6.1. 

This expression may be shortened by multiplyingit by 

(n - x) (n - x - 1) (n - x - 2) .... 3.2.1 (n - x)! 
(n-x) (n-x-1)(n-x-2) .... 3.2.1 (n - x)! 

it then becomes 

nPx III.6.2.
(n - x) 1 
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In the case when x 
 n, 111.6. 1. becomes 

npx 
 n (n - 1) (n - 2) (n - 3) ... 3.2. I. 
 n! III.6.3. 

and this is the number of permutations (arrangements) of n things 

taken n or all at a time. 
Let us now turn to the questionof how many different combina­

tions of x things are possibleif n things are available. A combina­

tion is an unarranged or unordered set of things, while a permuta­

tion is an arranged or ordered set of things. 

Definition: The number of different unordered sets of x (x < n) 
things which can be selected from a set of n things is called the 

number of combinations of the n things taken x at a time; and is 

designated by the symbol C
. 
To find Q, it is only necessary to keep in mind that we may 

have permutations of groups (or combinations) as well as of in­

dividuals. After all the different groups have been obtained, the 

individuals in each group may be arranged to give the total 

number of permutations. 

I The number np. is thus the number of ways we can make Q, 

group choices followed by x! independent individual choices. 

That is 

npx 
 nCK -X! 

hence CX = nPx n! III.6.4. 
X (n - x)! x! 

since from I11.6.2. npX = n !

(n - x)!


Example: Let us find (a) the number of permutations and (b) 

the number of combinations of 15 things taken 3 at a time. 

(a) From III.M., ILIP3 
 15-14-13 
 2730 
(b) From III.6.4., 11C3 = (15!)/(3!) (12!) - 455. 

Until now we have dealt with the simple probability of whether 

a single event would happen or would not happen. But we are also 
interested in finding the probability that two or more events will 

occur together. 

For an illustration of a compound event, we may toss two 

pennies. The number of ways in which two pennies may lie axe: 
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HH, HT, TR, TT. The probabilityof two pennies fallingheads up 
is thus 1. Now we recall that the probability of one penny falling 
heads up is 
 and that I - I = 1. This indicates that the probab­
ility of the compound event, two pennies falling heads up, is 
under certain conditions the product of the probabilities of the 
two separate events, each event being a penny falling heads up. 
This is precisely what the situation is if the separate events are 
independent. 

If it is keptin mindthat for every event there is a corresponding 
probability p, then the theorem of compound probability follows 
immediatelyfrom basic principle number two in article IIIA 

111. 7. Theorem of Compound Probability. If the probability that an 
event will occur is p,. and if after this event has occurred the probability 
that a second event will occur is P2 then the probability that both 
events will occur in the order stated, is Pl'P2' 

If the events are independent, as in the case of the pennies, it is 
not necessary that they happen in any definite order. The com­
bination a "head and a tail" is the same as a "tail and a head". 

Corollary: If the separate elementary events are independent, 
the probability of the compound event is the product of the 
probabilities of the separate events. 

If there are x independent events and if p is the probability of 
the occurrence of each independent event, the probability that 
the event will occur x times in x trials is px. If in n trials q is the 
probability that the event does not occur, and if x (x < n) is the 
number of times the event occurs, then n - x is the number of 
times the event does not occur. Clearly, if px is the probability 
that the event will occur x times as specified, qn- is the probab­
ility that it will not occur the remaining (n - x) times. Hence the 
combined probability that in n trials a specific x of the n events 
will occur as specified is 

p (x) = pl, -qn-x 

This theorem applies to a set of events as well as to a single event 
for the probability for the occurrence of any specific set of x 
events is the same as the probability for any other set of x events. 
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Consequently, the probability of the event's occurring exactly x 
times without the restriction of its being a specific x is equal to the 
product of the probability for any specific x occurrences by the 
number of combinations of x sets there are in n events. This value 
has been shown to be (III.6.4.) equal to 

n! 
nCx ;-- X! (n X)! 

Hence, the probability P (x) of the event's occurring exactly x 
times in n trials is 

P (X) = . 
n 

. pxqn-x = nC
 px qn-x III.7.2. 
x! (n - x)! 

where x may assume the values 0, 1, 2, ... , n. This is a funda­
mental law in probability, and if we let x take on all integral 
values from 0 to n, we obtain the respective probability for each 
of the possible and mutually exclusive events. 

A more general theorem in which combinations are involved is 
known as the Binomial Theorem. 

III. 8. The Binomial Theorem (applied to probability). The Binomial 
Theorem states that if the probability that an action will take 
place in a particular way is p, and the probability that it will not 
be so performed is q, then the probability that it will take place 
in exactly n, (n - 1), (n - 2), ... 3, 2, 1, 0 out of n trials is given 
by the successive terms of the binomial expansion: 

(p + q)n . pn + n -pn-IL q + n (n 1) pn-1 q2 . ..... 
1 -2 

which is known as the Binomial Distribution. 
It will be noted that the generating term is of the form ,Q, 

P'q'. For the purpose of illustration, let a coin be tossed 
3 times. In this case p =. q The probabilities of getting 0, 1, 
2, or 3 heads are: 

Q)3, 3 (1)3 (J)3, ffl3 

and these are the successive terms of 
(p + q)3 
 p3 + 3 p1q + 3 pq! + q3 
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Similarly the probabilities of getting 0, 1, 2, 3, or 4 heads are: 

(1)4, 4 ffl4, 6 (1)4, 4 (1)4, (1)4. 

We might represent the possible results of tossing a penny four 

times graphically, as shown in Figure 111.1. 

6/,
16 

Z' 

4
'/I 6 

2/16 

0 1 2 
h --------------­

3 4 

Number of Trials 

FIGURE III. 1


GRAPHicAL REPRESENTATION

OF THE POSSIBLE RESULTS OF TOSSING A PENNY


The possibility of each number of heads is represented on the 

vertical ordinate. The width of each rectangle is equal to one unit 

Ax. The area of each rectangle expressed in general terms is 

X, pX q- Ax 
'C
 px qn-x 

This meansthat the area of each rectangle equalsthe probability 

of getting the number of heads corresponding with the mid-point 

of its base. The entire area 
. the probability of getting 0, 1, 2, 3, 

or 4 heads = I 1 4 + 6 + -I- + I = 1, so that the prob­16 ' If, 16 16 16 
ability of getting a given number of heads is equal to 

Area of rectangle 

Area of whole figure 
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Expressed mathematically, the probability of getting any 

number of heads, x 
Cx px qn-x

P (X) = ' = nCX pX qn III.8.2. 
I C
 px qn-x 

since 	 ZnCx px qn-x 

In the example given p = q = 
 with the result that the graph 

of the distribution is symmetrical. If p is not equal to q the distri­

bution is not symmetrical but skewed. It is also clear that as n is 

increased, the area can be accurately represented by a smooth 

curve. It is only in the long run that the relative frequency with 
which an event happens as specified may be compared to probab­

ility. It is only when a man has large capital that he can play long 

enough to take advantage of the odds in his favor. 
A quicker and more efficient way of obtaining the probabilities 

for an event happening as specified x times out of n trials is by the 

use of a recursionformula. As in Ill. 8.2., let 

n ! 
P (x) px qn-x

x! (n - x)! 

Then, 

n! 
P (x + 1) = (x + 1)! (n px+1 qn-1 III.8.3. 

Dividing 111.8.3. by I11.8.2., we get 

P (x + 1) (n-x) P 

P (X) x + 1 q 

(n - x) p
whence, P (x + 1) P (X) III.8.5. 

x + q 

To obtain the values shown in the tabular form, we proceed as 
follows: Let x = 0, then from III. 8.2 it is found that P (x) = P (0) 

qn. Next, from III.8.5., we find that where x = 0, 

P (1) 	 PP (0) 
q 

p- qn = nq n-1 P. 
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Then, let x = I in III.8.5., 	and 

n-1 P
P (2) - .- P (1) 

2 q 

n-I p . nqn 
2 q 

1) qn-2 2 
2! p 

Continuingin this way, all the probabilitiesof happenings may be 

obtained and they are shown in the followingtable for the different 

possibilities. 

Table III. 1 

BiNomiAL DisTiuBUTION 

Number of Probability of 
Happenings Happenings 

0 .................... qla 

I .................... nq"-' p 
n(n-1) _2 2 

21 
. qr, 

3 .................... 1) (n
3 

2) q
-$ p3 

.................... . 

..... I.... I......... . 

.................... . 

.................... nT
I(. 
)! q11 p, 

.......... I......... . 

.................... . 

.................... . 

n .................... P n 

Such a description of happenings is designated a probability 

distribution or a relative frequency distribution in the case of a 

sample. If each of the probabilities were multipliedby the number 

of individuals (number of cases or number of trials), we would have 

the corresponding theoretical (absolute) frequency distribution. 
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III. 9. Modal Term of Binomial Distribution. The Binomial distri­
bution is analyzed by finding the modal term, the arithmetic mean, 

and the variance. To find the modal term we take the generating 

term, 

n

P (X) px qn-x


x! (n - x)!


of the binomial distribution and find the value of x such that the 

xth term will be a maximum and hence be greater than or equal 

to either the (x + I)th term or the (x - I)th term. In otherwords, 

the ratio of the x th to the (x + I)th term or the (x - 1)th term is 

equal to or greater than one. Thus 

n! 
... px qn 

(X) (n I and 

P(x + 1) n PX+1 qn-x-I 

(X + (n - X ­

n ! 

P (X) X! (n X)! px qnX 

PK-' qn-x+l 
(x - 1)! (n - x + 1)! 

Simplifying these two inequalities, we find, respectively, that 

x + q 
- 

: I or x 

. pn - q and 

n-x p 

n-x + I p 
:- lorx <pn +p 
x q 

Now, if R is the modal or maximum value of x, 

pn - q :

 i :

 pn + p III. 9. I. 

Thus neglecting a proper fraction, pia is the most probable or 

modal value. If pn - q and pn + p are integers, then there exist 
two equal terms which are larger than all the others. This is the 

same as saying that if the chance of n eventshappening is ' 
3) 

then 

in 30 trials it is most likely to happen 10 times. 

Examples: (a) What is the greatest number of times the event 
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will happen as specified when there are n 
 11 trials and when 
p = q 
 I From III.9.1., we find that i is either 5 or 6. 

2 ' 

(b) If n 
 12 trials and p q :i 6.
2 

(c) If n = 15 trials and p 
6 

and q 
P 
:i 
 2. 

(d) If n = 18 trials and p ' and q ',:i 
 3.
6 6 

(e) If n = 23 trials and p 'andq
' :i
3orC
6 6 2 

III. IO. Arithmetic Mean of Binomial Distribution. Let _X be thearith­
metic mean (mathenzatical expectation - probableor expected number 
of times the event will happen as specifiedin n trials under thelaw 
of repeated trials). By definition, the arithmetic _X of x is 

n 

'Y' X px qn-x 

0 (n -- x) 1 
n I III. IO. 1. 

- px qn-x 
Ex X! (n x)!0 

But the denominatoris the total probability which is equal to 1. 
Simplifying, 

n (n - 1)

x 
 O-qn + I -nqn-lp + 2 - 
 
 qn-2 p2 +


21


= np (q--l + (n - 1) qn-2p + (n 1) (n 2) n-3 2 
2 q p 


 np (q + p)n-I = np np. III. 10. 2. 

Illustrative Example 1: Given p and n 18, and q 
 1
6 6 

required to find the mean _x. 
Substituting in 111.10.2, 

X = 18 3. 
6 

The answer may be interpretedto mean that in the long run the 
event will happen one time in 6 trials and therefore in 18 trials we 
would expect the number of occurrences to be 3, while the actual 
riumber of occurrencesin a single trial may be x = 0, 1, 2, 32 ... ,18, 

Illustrative Example 2: Suppose that it has been ascertained from 
a traffic count that on the average 30 per cent of the vehicles turn 
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left, what is the probability that (a) a specific 3 out of 5 (say the 

first 3) vehicles will turn left, (b) any three (exactly 3), out of 5 

vehicles will turn left. 

(a) In the first case, III.7. I., p (x) = px q-x becomes 

p (3) ;-- (.3)3 (.7)2 =.01323 III. 10.3. 

n! 
(b) In the second case, III.7.2., P (x) 
 
 px qn-x 

X! (n - x)! 

becomes 

P (3) (.3)3 (.7)2 .1323 III.10.4. 
3! 2! 

The answerfound in III. 10.3. means that in the longrun, 1323 times 

out of 100,000, a specific 3 (say the first 3) out of each group of 

5 vehicles will turn left. The answer found in III. 10.4. means that 

in the long run, 1323 times out of 10,000, any 3 out of each group 
of 5 vehicles will turn left. 

III. II. Variance of Binomial Di8tribution. Another important 
measure is the arithmetic mean of the squares of the differences 
between the number of times the event will happen as specified 

and the expected number of times the event will happen as speci­
fied. Recall that in Chapter 11 in discussing frequency diagrams 

we spoke of this as being similar to the square of the radius of 

gyration. This quantity is called the variance. To obtain its value, 

if G2 is the symbol for variance, then 

E (X _ np)2 G2 
E.n 
t 

I 
px qll-x (X - np)2 III. 

0 

But 

E (X - np)2 E (x2) - [E (x)]' III. I 1.2. 

Since, we have already found the value of E (x) to be np, it 

suffices to obtain the value of E (x2). By the definition of expected 

value, 

n 
E (x2) 
;" . X2 pxqn­

0 
x! (n-x) I X) 
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O.qn + Lnqn-lp + 4 n (n- 1) qn-2P2 
2! 

+ 	 9 n (n- 1) (n- 2) qn-
p3 ................ 
31 


np 	 q-nl+2(n-l)q-2p+ 3(n-1)(n-2) q-3p2 + 
1 2 ! 

np (q + p)n-1 + (n- 1) p I qn-2 + (n - 2) qn-3 p 

+ 	 (n 2) (n 3) qn-4 2 . .............. 
2 ! p 

np + (n - (p) (q + p)n-2] 

np + (n - p] = np + n2 p2 - np2 

Substituting the values from III.11.3. and III.10.2 in III.11.2., 
we find 

a2 = E (x - np)2 = E (x2) - [E (X)]2 becomes 
01 = np + n2 p2 _ np2 n2 pl 

= np - np2 = np (I - p) = npq III.11.4. 

Illu8trative example: Given p 1,6 q 1,6 and n 
 18. From 

III.11.4. we find that a2 = 18 2.5. This means that in6 6 
18 trials we would expect the number of occurrences to differ from 

3 by 2.5. In other words, we would expect the actual number of 

occurrences to lie between 3 - 2.5 
 0.5 and 3 + 2.5 = 5.5, 
namely, between 1 and 5. 

In the case of relative frequency or relative number of occur­

rences, if (x/n - p) is the difference between the observed number 

of occurrences out of n and the probability p of occurrence, then 
it is not hard to show that 

E (X/n - p)2 - E (X _ np)2 G2 pq III. 5. 

n2 	 n2 n 

III. 12. Size of Sample Required for Stability. At this point it should 

be noted that we are thinking of the relative frequencies in many 

random samples, and that we are concerned about the degree of 
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stability or the degree of dispersion of such a series of relative 

frequencies. This is a fundamental problem in statistics. In the 
binomial distribution, sometimes called the Bernoulli distribution 

we assume that the underlying probabilityremains constant from 

trial to trial and from sample to sample and that the drawings are 

mutually independent. This assumption is implied in so-called 
,simple sampling. 

RetumingtoBernoulli'stheorem,III.3.1.,Iet e
?, Eq, (?, > 1).
Yn 

In the Bienaym6-Tchebyeheff inequality, III.5.2., let D = Y
jn_. 

Then 

P Q, D) becomes P (e) < pq III.12.1 
X2 	 n e2 

It may be seen from 111. 12. 1. that as n tends to infinity, I = P (s) 
tends toward zero. This proves Bernoulli's theorem for any dis­

tribution law of probability by the use of Bienaym6-Tchebyeheff 

criterion as was suggested in 111.5. 

In order to get a comparison of the results obtained by articles 

III.3., IIIA., III.5., let e = 0.01, p 
 0.1, q 
 0.9, X = 2 Y-5 

4.472 and 0.05. Substituting these values in III.12.1., 

pq 
P (e) jje2 

P (.01) 
 0.05 P) (.9) 
n (.01)2 

whence n I,-- 18, 0 0 0. 

Again let e 0.05, p 0.1, q = 0.9, X 
 2 Y5 
 4.472 and 

0.05. 	Substituting these values in 111.12.1., we get 

P (P-) < pq
ne2 

P (.05) 
 0.05 < (J) (.9) 
n (.05)2 

whence n '-> 718. 

Comparing these results with those previously found, it is seen 

that they are materially less as was indicated previously. It is 
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noted that n is a maximum when p = q 
 
 for then pq is the 
maximum. Hence, it is always safe to take the value of n when p 
and q equal 
 as the minimum value of n. That is, in case the 
values of p and q are not known, it is safe to use p = q 
 I in 
determiningthe size of sample required. In many traffic problems, 
p is very small and q very near unity which will require a smaller 
sample for stability than if p were equal or nearly equal to q. 

Additional means of characterizing the binomial distribution 
are moments about the mean. These are: 

0 

IL2= npq

tZ3= npq (q - p)

k= 3 p 2q2 n2- pqn (I - 6 pq) III. 12.2.

..................................


[LX ;--= (j - np)x qn-j pJ0 
[tx+l 
 pq nx[tx-l + 

dp, 

where is the number of combinations of n things taken at a 

time and n is very large. 
Other characterizingmeans are the P coefficients: 

(q - p)2 

npq 

P2 3 + I - 6 pq III. 12.3. 
npq 

PI is a coefficientof skewness, while P2 is a coefficient of kurtosis 
or "peakedness". 

The theorems of Bernoulli and Cantelli and the Bienaym6­
Tchebycheff criterion are devoted to obtaining a lower limit to the 
probability that the experimental error will not exceed a given 
amount. 

The binomial distribution and particularly its generating func­
tion P (x) given in III.7.2. gives the actual probability of the 
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event's occurring exactly x times in n trials, so that it is possible 

to determine the actual probability of the event's occurring be­
tween any two specified number of times in n trials. This is ac­

complished by adding the respective separate probabilities in­

volved since the events are mutually exclusive. 

The function P (x) is given by 

P (x) n x
)! pxqn-x 

The function P (x) is a fundamental law of probability for all 

positive values of x, integral or fractional. The function is con­

tinuous almost everywhere (i. e. except for negative integers) and 

has a unique value for every positivevalue of x. It is simple enough 

to handleif x is an integer. It is quite difficult an& cumbersomeif 

x is not a positive integer. 
In practice it is most usable when x is a whole number. Many 

times, however, x is not a whole number. It then becomes im­

perative, if possible, to derive from the function given in III.7.2. 

another continuous function which is easier to use and also gives 
us the actual probabilities (not lower limits only) that are desired 

to be known. 
Two such functions are the Normal Distribution and the Poi88on 

Distribution. We shall now develop and discuss these two func­

tions. 

III. 13. The Normal Distribution. The normal distribution is a con­

tinuous approximationto the binomial distributionwhenn is large 

and p and q are not small. 

Let us reexamine the generatingterm P (x) of the binomial dis­

tribution, namely, 

n! 
P (X) pxqn-x III. 13. 1. 

x! (n - x)! 

The graph of this equationis a set of points whose abscissas are x 

values and ordinates are the corresponding P (x) values for all 

values of x from zero to plus infinity. The function P (x) is con­

tinous almost everywhere (i. e., except for negative integers). 
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For our purpose, it is convenient to translate the origin to the 
mean or expected value of X. This requires that we substitute 
x 
 XI+ np for x in III. 13. I. It then becomes 

n! I 
P (XI) = (XI+ np)! (nq - XI)! PPn+X qqn+x' III.13.2. 

If we consider unit intervals only, this probability that the 
number of occurrences will lie between np, - k and np + k, in­
clusive of end values, is 
k 

kX P(x')
P(-k)+P(-k+1)+... +P(O)+P(I)+...+P(k) 
III. 13.3 

This follows from the fact that the resultant event is obtained by 
compoundinga set of mutually exclusive events in which case the 
resultant probability is the sum of the probabilities of the set of 
mutually exclusive events. 

To simplify 111.13.2., if the number of trials n is large, it is con­
venientto use Stirling's asymptotic approximationfor n! which is 

n! nne-a (2 n)y' (I + 121 n + 288 ' n' + III. 13.4. 
or 

n! V-27 e-n nn+'2 III.13.5. 

if the first term of III. 13.4. only is used. If III. 13.5. is used, the 
result obtained is equal to the true value divided by a number 
having a value between 1 and 101n. 

Remembering that n is large and using 111.13.5. for all the 
factorials in 11I.13.2., 

P (XI) XI 
pn -x'- 'T(I XI -qn+x'-vl 

III. 13.6. 
(2 7rnpq)' P
 qn) 

TransformingIII. 13.6. by taking logarithmsof both sides of the 
equality, 

XI 
loge P (XI) log
 (2 -npq)'2 - (np + XI + 1) log,, + ­

5 2 pn) 

(qn - x + 1) log. I - XI III. 13.7. 
2 
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xi 
Expanding log,, I + X' and log, I - - in power series of x',

pn) qn) 
111.13.7. becomes 

log. [P (x')] [27cnpq]i (np + x, + t) r x' x'2 

R (x')
[np inij
 n3 

X12 Xf3 

- (qn - x'+ 1) x S (X') III.13.8. 
2 L-q- 2 n2q
 n3 I 

To make this expansion valid, it is necessary to assume that n 

is sufficiently large so that x-' 'is sufficiently small. It follows that 
n 

R (x') and S (x') are finite. 
Simplifying III.13.8., and performing the multiplying opera­

tions indicated, we find that I 

(p - q) x' x12 xf2 T (x') III. 13.9. 
log, [P (x')] [27cnpq]l= 2 npq 2 npq + 
2 

The equation 111. 13.9. may be written in the form 
X12 Xf U 

10& [P (x')] [2 nnpq]I= - - - III. 13. 1 0. 
2 npq n 

where U (x') is also finite. 
Now if n is large enough (in other words, n must be very large)

xi 
so that - U (x') is very small (negligible or within the allow­

(n) 
able error), then ignoring this term, III.13.10. may be written as 

I _X'. 
P (X') = F2 _
 n-p_q)fe2 npq III. 13. 1 1. 

which is called the normal distribution. 
It appears that this was first known to DeMoivre in November, 

1732. Multiply both sides of the equality H1.13.3. by Ax', then, 
k 

Z,,, P (x') Ax'
 P (- k) Ax'+ P (- k + 1) Ax. . ..... + P (0) Ax' 
k 

+ P (1) Ax'+ P (k) Ax' 
and on the assumptionthat P (x') is continuous, 

k 1 k XI, 

Lim e - 'f'-Pqdx' III. 13.12. 
Ax,-->. OE-,p (x') Ax'F-- 
_271npq)` fk 
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The right hand memberof III. 13.12 is known as the probability 

integral. It gives the probability that a random variable x'has the 

value - k :

 x'::

 k. 
If P (x') is discontinuousand the ordinates are at unit intervals, 

then in III. 13.3. there is one more ordinate than intervals of area. 

Hence, 
k+



k I


-k 
P (X') 

F2 q),-
e2_nPqdx' approximately. III. 13.13._;
np x" 

The above resultssummarizedlead to the well-known DeMoivre-

Laplace theorem, namely": 
The probability that the difference x'
 x - np between the 

number of occurrences x and ae, expected number of occurrences will 

not exceed a positive number k is given to a first approximation by 

111.13.12 and to closer approximation by 111.13.13. 

III. 14. Interpretation of ae Properties of Normal Distribution. The 

special form of the normal distributionas given in III. 13. 1 1. is re­

stricted to the conditions that n is large and p and q are not small 

thus giving a continuous approximation to the binomial distri­

bution. 

1 -72 

Now consider P (x) e 20 III. 14. 1. 
2 

where a is the standard deviation with the restriction that it is 

finite such that 0 _-
 cr :

 k. 

The graph of the equation is shown in Figure III.2. 

From III. 14. 1., it is seen that the curve is symmetrical with 

respect to the y-axis. Likewise the curve has a maximum point at 

x = 0, namely at the point whose abscissa is the arithmetic mean. 

There are two points of inflection, namely P, and P2 each of which 

are at a distance a from the arithmetic mean. The curve is asymp­

totic to the x-axis at both plus and minus infinity. 

From III. 14. I. or from tables, it is found that the total area 

under the curve is unity, the area between x 
 - a and x 
 + a 
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is 0.6827, the area between x 2 cr and x 
 + 2 cr is 0.9545, 

and the area between x ;== - 3 a and x + 3 a is 0.9973. If 

2 fx - x' I 

a V2 7c 0
e -i
 -0 dx 2 

then x ;== 0.67449 a III.14.2. 

which is known as the probable error. 

Y

Y=P(X)


4 

3 

pi P

2 ­


a. x
36- 26- a- 6' 26- 36­

FIGURE III.2 

­

1 - Xs 

GRAPH OF THE EQUATION P (X) 2 7C e 20 

As an illustration, consider again the case 0.05, e ="0.01. 

From the Bienaym6-Tchebycheffinequality, A 
 t 4.472. Now, 

let p = q L. Then, from 111. I 1. 5. and Ill. 12. L,
2 trp-qi
 e 

n 

becomes 4.472 1 M) m ::

 0.01V n 
whence n 

: 500 

Similarly, if -
 
 0.05 and e == 0.05 
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pq
t -:< z 
Vn 

becomes 4.472 (Y'01) :< 0.05 
V n 

whence n '-> 100. 

Again, let p and e 
 0.01. The value of t such that 

2 
t 2 

- e 2 dX 
. 0.99 = I 

V2 7c t 

is 2.58. But n pqt'. Hence, solvingfor n, it is found that n 166 
2 

and if 

2 t Xi 

r271 f e 2dx=0.95=1--n, 
_t 

t = 1.96 and n --> 97, if s = 0.01. 

Under certain conditions where p 
 q, the equation of the con­
tinuous approximationcurve is given by 

NpP+1 +?E)ya 
y = aep r (p + i) e a 111.14.3. 

where the origin is at the mode. 
The question is often raised: How is it known that the distribu­

tion is normal? A very good answer is: If it can be justified axio­
matically that the arithmeticmeanis the most probablevalue, then 
the distribution is normal. This is known as the postulate of the 
arithmetic mean. Another way is: If p, 
 0 and P2 = 3 (See 
II.25.17. and 11.25.18.), the distribution is normal. 

III. 15. PoissonDistribution. This distributionis frequentlythought 
of as the law of small probabilities or the law of rare events. It 
appears to be especially useful in solving many traffic problems 
(see Chap. V). 
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Consider again the generating term of the binomial expansion, 

n! 
P (X) = 
1(n X) , pxqn-x III.15.1. 

the probability that in n trials exactly x of them will take place as 

specified, where p is the probability that the event in a single trial 
will occur as specified. 

Equation II1.15.1. may be written as 

P (X) 1) 2) (n + 1) PK (I - P)n-x 
x 

111.15.2. 

M 
Write p - where m is the number of times a given happening 

n 

occurs in n trials. Substitutingthis value of p for p in III. 15.2., 

(n) 'n - 1) (n - 2) (n-x +I /mx )U(,-M -X 
P (X) = I _M 

n 
 n n 
X!)( n n) 

III. 15.3. 

Now, hold both x and m fixed and let n approachinfinity. Then, 
in the limit, 

n n - 1 n-x +I M -X 
-= 1) - = II ....... 
 
 = 1, and I 1. 
n n n n) 

M n 
To obtain thelimiting value of (I - n) we set 

II1.15.4. 
Mn)n = [(1 - vnr] M 

M ni 

The limiting value of I - - as n approaches 
n)-1 

infinity is e-1. Hence 
) i, 

Lim -M ]% e- M. 111.15.5. 
n-00 n 

Substituting all the limiting values just found in 111.15.2., we 

obtain 
MX 

P (x) (1) - e-m. (1) III.15.6. 
x 
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which may be written as 

mx e-m 
P (X) 
 I 11I.15.7. 

which is Poisson's distribution or the Poi88on Exponential Func­

tion. This function is a continuous approximation to the binomial 

distributionwhen p is small and n is large. 

The function is continuous almost everywhere and has a real 

value for all values of x except negative integers. For negative 

integral values of x, P (x) is not defined. The continuityis obvious 

if it is recalled that x! is related to the Gamma Function,9 that is: 

X! 
 
0 y X e-y dy = U1.15.8.r (X+1) 

The graph of the functionis shown in Figure I11.3. Also tables 

(Tables for Biometricians and Statisticians, pp. 122-124) of values 

for Px exist. 

5' P 0 5 -1 
E JW. 

A 
E 

rn=l.o 

3 

2.0 

2 

-M-10.0 

2 4 6 8 10 12 14 16 18 20 

Valm of X 

FIGur.E III.3 
RIX e-M 

GRAPH OF THE FuNcTioN P (X) 



STANDARD DISTRIBUTIONS 93 

From the figure it is seen that for Small values of m the curve is 

highly skewed and that as the values of m increase the curve be­

comes more symmetrical. 
In all cases, p must be small and n must be large, but small 

values of m as well as large values of m are possible under these 

conditions. It is also quite important to note that as M becomes 

larger, the agreement between III.15.7. and III.13.11. becomes 

closer. 

III. 16. The Sum of the Term8 of the Poimon Di8tribution. Since each 

termis theprobabilityfor the event's happeningx times, the sum of 

the probabilities for each of these possibilities should equal unity 

because some one of the possibilitiesis certain to take place. Letting 

x take successively the values 0, 1, 2, the sum of the re­

spective terms is 

Go mx e-m MO e7m me-M M2e-M 

0 x X! 0! 21 

M M2 M3 
e_m(l +_+_+_ + III. 16. 1. 

I ! 2 ! 3 ! 

The series in parentheses has the value e'. Hence 

m'e-M 
X! e-mem = eO= III.16.2. 

III. 17. The Arithmetic Mean of Poi8son Di8tribution. If _x is the 

arithmetic mean number of happenings, then 

co mle7-- M 
x EX0 X!x 

Moe` me-M m2e-m In3e-M

. - I + - 2 + - 3


0 + 1 2 ! 3


M M2 M3


= me-m I +T! +- +- +...
1 2 3 

= me-meM = M. 
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III. 18. Phe Variance of Poimon Distribution. Since variance is the 

expected value of the squares of the measurements minus the 

square of the expected value of the measurements, we will first 

obtain the expected value of the squares of the measurements. It 

is given by, 

W mx e- in 
(X2) 	 )
. 
 
 X2 

0 

Moe` me-m m2e-' m3e7m 
__0 0 + - 1 ! I + - 2 1 4 + - 31 9 . ..... 

+ 2 m 3 m
 .. . .] 
][n e- __ + - +


1! 2!


e7. [6m + ( M2 M3 +

M In +


me-1n [em + m 	 m m
 . .....

I ! 21


me-m [em + me- ];== m + m2 	 111.18.1. 

But the square of the expected value is M2. Hence 

a' 	 E (xl) - [E (x)11 

in + M2 - M2 
 M 111.18.2. 

Example 1. There occurred at a certain highway intersection 6 

accidents during the passing of 10,000 vehicles. In this case p = 

0.0006 and n 
 10000. Suppose we wish to know the probability 

that the number of accidents lies between 3 and 9 per 10000 ve­

hicles. Making use of 111.13.13., we find that 

k+j 	 31 
XI' 	 - 'IS 

P (x) ell.9928 dX'=: 0.02654 efl-.-9928 CIX' 
(27cnpq) 1E _k-j 3
 

From tables of the normal probability function it is found that if 

xfl 3.5 
z - = 1.429 

2.449 



STANDARD DISTRIBUTIONS 95 

then 

0.02654 ell.9928 dX'= 0.847 

the desired probability. 

To calculate the probability from the Poisson distribution with 


 6, we add the probabilities for the event's happening 3, 4, 5, 

6, 7, 8, and 9 times as taken from the Poisson tables10 for indi­

vidual terms: 

Happenings Probability 

3- .089235 

4 .133853 

5 .160623 

6 .160623 

7 .137677 

8 .103258 

9 .068838 

Total Probability .854107 

We may also use the table for cumulated terms and substract 

the probabilityfor 10 or more happeningsfrom the probabilityfor 
3 or more happenings with m 
 6. 

Happenings Probability 

3 or more .938031 

10 or more .083924 

.854107 
 probability of 3 to 9. 

Again if the binomial distribution is used, the value of the de­

sired probability is 0.854. 
These results show that there is little difference between the use 

of the so-called normal distribution and the Poisson exponential 

function, while the Poisson exponential function is a better 

approximation than the Bernoulli distribution for rare events, 

that is events with small probability. 

Example 2. For a given period of time, at a certain point on a high­

way, it is observed that on the average three heavy trucks per 
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100 vehicles pass the point. A subsequent sample contains six 

heavy trucks per 100 vehicles. Using the Poisson exponential dis­

tribution, compute the probabilities of 0, 1, 2, 3, 4, 5, 6, 7, and 8 

heavy trucks per 100 vehicles using m = np = 3. 

The probability distributionis shown in Table III.2. 

Table III.2. 

X PX X PX 
0 .0498 5 .1008 
1 .1494 6 .0504 
2 .2240 7 .0216 
3 .2240 8 .0081 
4 .1680 

This table shows that (1) the probability of obtainingone heavy 

truck in a sample of 100 vehicles is 0.1494; (2) the probability of 

getting more than three heavy trucks is .5768; (3) the probability 

of getting at least six heavy trucks is .3080. 

The probability of six or less than six, being .9664 with a level 

of significance of I - .9664 
 .0336, indicates that on a 5 percent 

level we have grounds to reject the hypothesis that this number 

of heavy trucks is not significant. 

In obtaining the size of the sample so that the error from the 

arithmetic mean is one heavy truck, namely, that the number of 

heavy trucks is between 2 and 4, the reasoning is: 

The standard deviation is 

a 
 m = np 
 n (.03) 

and since e = 1, it is clear that 

e 
 tM 

becomes I 
 (1/3) n (.03) 

which gives n P-_ 100 

and the sum of the probabilities, namely 

-2240 + .2240 + .1680 = .6160, the measure of certainty. 

Example 3. Required to find the probability of n cars appearing 

within an interval of time r beginning at the instant, t. Then 
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p (n, r, t), the probabilityof n cars within an interval of time r be­

ginning at the instant t, is given by 

p (n, r, t) =K" e­
n! 

where K is the expected number of cars in the interval. 

III. 19. Dispersion and Variance. Thus far it has been assumed 

that the relative frequency (sample) or the probability (universe) 

that an event will happen as specified remains constant through­

out the entire field of observation. There are many cases where 

the underlying probability (relative frequency) does not remain 

constant. This indicates that it is necessary that the statistician 

obtain all the available knowledge from the data by properly 

classifying them into subsets for analysis and comparison. In other 

words, it is valuable to know whether the relative frequencies or 

probabilities vary from case to case or from set to set. 

Consider the following: Given N independent quantitiesX,., X21 

... I XN such that the mean or expected value E (Xi) of Xi is aj 

and the mean or expected value E (X?) of X? is Ai. Then, if 

- = (XI + X2 + - - -
+XN 
X N 
) and a = (a,, + a, + + a.)/N, it 

has been shown ("Probability," by J. L. Coolidge, Oxford Press, 
1925,p.67)that 

N N - I N N 
E (Xi-X)2 - N Y, I (Al - a?) + Y (a, - a)2 III. I 9. 1. 

If the observations are from homogeneous data, a, a, Al 
 A. 
In such a case, III.19.1., reduces to 

N N - 1 
E (Xi-X)2] = N .N (A - a
) = (N - 1) c72 III.19.2. 

since 

a2 = E (X2) - [E (X)]2 
 A - a2. 

The relationshipgiven in III. 19.2. reduces to 

[N
C72 = E 5,
, (Xi - X)2/(N III. 19.3. 
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Suppose now that a set N = lk independent items has been 
observed and classified in some relevant manner, say, in 1rows of 
k items each as shown in Table III.3. 

Table III. 3. 

xnl X12, -, XiJ. ..... XjLk TI. St, 

X21, X2V .... I XJ . ..... Xk T, j
':2. 

. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 

XIV Xh
 .... PXlj' .... P x1k T1 - Xi.


Xh, X12. ..... Xlj, - - --, 'Xlk Tl- Rl.


T.1, ..... T.j . ..... T-k TT-2 s 

:R.21 X-J, 

In the table, T1. is the total and Xi. is the arithmetic mean of 

the ith row; T.j is the total and X.j is the arithmetic mean of the 

j th column; and T is the total and X is the arithmetic mean of the 
whole sample of N = lk items. 

k 
Let E (Xjj) = aij; E (X2,J) 
 A1j; 1j aij = kal; El at = la; 

k 
El Xi 
 IX; EJ Xj = kX. 

Then, by III. 19. I., for the ith row 

k k - I k k 
E EJ (Xii -Xi) - EJ (Aij - alJ 2) + EJ (aij - aj)2

k 

III.19.4. 

Summing 111.19.4. for all the I rows, it is found that 

I k k-1 I k
[)
jl E,(Xjj - 
1)2 

-El EI(Alj - alj )2 

L k- I I


I 
 k J(aij - al)2 
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Since E (Xi.);== a,, we note that 

E (Xi. - a,)' E (Ki.1) - 2 at E (XI.) + a? E (X1.2) a? or 

E (XI.2) E (Xi. - a, )2 + a? III.19.6. 

Applying III. 19. 1. to Xi. (i 
 1, 2, . . 

Xi. [E i a
 (atK)2 )2(X2.) 1] 

III.19.7. 
But 

k 
E a! E (Xi. - al)2 J (Aij - aij)

k2 

so that 

ElI - 1-1 I kE (Xi.-K)2 Ej(Ajj-ajj)2 (at - a)2 
2 

III.19.8. 
Applying III.19.i. to the Nlk values, we get 

E[ I Ik(Xjj - 5
)2 lk-I ' k 
Y -Elk 1 

1 k 
EJ (aij - a)2 III.19.9. 

By starting with the j th column and proceeding as in III. 19.5., 
III. i 9.6., an
 III. 19.7., it is found that 

[ k - =1_1 k I
E E JE I(XIJ - X.J)2] - Ejy 
,(Ajj - 0j) 

k I 

+ E , (aij - bj)2 III. 19. 1 0. 

and 
[ k -)21=k- I k I k 

E E X - 'F, J'Y,, (Aij - 01j) + EJ (bj - a)2
k12 

19.1 1. 
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If the N = lk values are statistically homogeneous or are all 

observations from the same population, then Ali 
 A, aij = a, 

= bi = a so that III. 19.5., III. 19.8., III. 19.9., and III.19. 1O., 

and III.19.11., become, respectively 
I k 	 k-1 

E 	 k .lk (A - a2) 
 I (k - 1) (A - a2)11EI(Xii-Xi.) 
III.19.12. 

X - YQ2] lk2 lk (A-a 2) (A - a2) III. 19.13. 

E[ I I k (XIJ - _)2 lk- 1 2) 
Y 'Y' X - - lk (A- a
);:-- (1k - 1) (A- alk 

III.19.14. 

E[EJEI(X'J_' J)2 lk (A - a2) 
k(1-1)(Aa2) 

III. 19.15. 
k 	 k_1 

lk (A - a
) - (A - a2) III. 19.16. 

To summarize, it has been shown that in a statistically homo­

geneous set of N = lk observations arranged in I rows and k 
columns, the following estimates of variance (or the following 

mean sums of squares) all have the same expected value: 
I k - I k 

'F., 11 (XIj X)2 5"i EJ (XIj - Xj.)2 

(2)
lk - 1 	 1 (k - 1) 

III. 19.17. 
k I 
7,J El (XIJ - X.J)2 k Z, (XI. - X)2 

(3) 	 .' - (4)

k (I - 1)


k 

Ili (X-J -X)' 
(5) 	 1 

k-I 

Any significant differences between the estimates given in 

III.19.17. indicate lack of homogeneity of the set of items. The 
tests for this will be described in Chapter IV. 
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Let us now consider several special cases. Let plj be the prob­

ability that X has the value Xlj andlet pibe the average probability 

for the ith set, then 

k 
kpi 
 EJ Pij; lp = El pi


1 1

and it can be shown by the use of III.19.1. that

I k I k


El EJ (Xlj - X)l = lkpq- El EJ (plj - pi)' + (k2 - k) El (pi - p)2


III.19.18. 

The special cases are: 

(1) Bernoulli series: pij 
 pi p. Here III. 19.18 becomes 
I k 

EiE (Xij- X)2 
 1kpq1 ii 

(2) Lexis series: pij pi; pi --- p. Here III.19.18. becomes_T_ 
I k 

It EJ (Xjj - X)l 
 lkpq + (kl - k) El (pi - p)2. 
1 1 1 

(3) 	 Poisson series: pij =_=
F pi; pi =_ p. Here III. 19.18. becomes

I k I k


El EJ (Xlj - X)l 
 lkpq- 11 EJ (pj - p)2 
I 1 1 1 

The special cases expressed verbally are: 

(1) Bernoulli series: The underlying probabilityp is constant from 

trial to trial and set to set or is constant throughout the whole 

field of observation and we have statisticalhomogeneity. 

(2) Lexis series: The probability is constant from trial to trial 

within a set but varies from set to set and we do not have sta­

tistical homogeneity. 

(3) Pois8on series: The probabilityvaries from trial to trial within 

a set of k trials, but the several probabilities for one set of k trials 

are identical to those of every other of 1 sets of k trials and we do 

not have homogeneity. 

Illustrationsof such series exist in the study of traffic on a given 

route at I different crossings at k different times with a total of 
N = lk observations. 
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III. 20. The Multinomial Di8tribution: Let samples of size n be 

drawn from a specified universe with each sample divided into 

the k classes or cells with the distribution random among these 

classes or cells. 
The probability,P, that there are f., individuals in the first cell, 

fO2 in the second cell, and so forth, is 

P = 7CIfOl 7rfO2 . . . . . 7C,,fbk n I11.20.1. 

fOl ! fO2 !..... fOk ! 

where 7r, is the probabilitythat an individual falls in the first class 

or cell, 7c2 the probability that it falls in the second cell, and so 

forth; and 

n! 

f1l ! fO2 !. . . . .f0k! 

is the number of combinations of n things taken for. of one kind, 

f12 of another kind, fOk of the k-th kind. 

To illustrate: At an intersection point it has been determined 

that the probabilityof turning left is 2 of going straight ahead is 
5 ) 

and of turning right is 1 0 Of 6 vehicles, what is the probability 

that one will turn left, two will go straight ahead, and 3 will turn 

right ? 

Solution: Here 7r, 
 2 
 0.4, 7c2 = I = 0. 5, and 7r3 0. 1. 
5 2 1 0 

Also fol = 1 1 fO2 
 2, fo', 
 3. Substituting these values in M. 20. I., 

P = (0.4)1 (0.5)2 (0.1)3 ! 
1! 2! 3! 

0.0001 (60) = 0.006 

which means that 6 times in 1000 the event will happen as speci­

fied. 

Let us now a88ume that each f0j (i = 1, 2, k) is large. Then, 

by the use of Stirling's asymptotic approximationto the factorials 

in III.20.1., it is found that 

nxL+ie-n V-27r 
P 7C,'01 72'02 .... nkfOkf 1 f - fok+i e-fOk r27rf0101+ V27c ...e7 01 fOk 

I11.20.2. 

where the symbol 
_' means "approximately equal to". 
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k


Since Ji fol = n, it is not hard to show that

\EO2+-' 7Ck)f'Ok+f


in-x,\'01+ i jn7C2 n

I11.20.3. 

-1 kTO2fol f 
Now, let ft, n7r, (i 
 1, 2, k) and 

fol - n7r, fol - ftj
xi = - -- 111I.20.4. 

Y
7rj 

for i = 1, 2 ....... k. 

Substituting from I11.20.4 in III.20.3, and transforming to 

logarithms, it is found that 
k 

lo P-logK= (fol + 12 ) log ft,fol 
k fft

(f0i+'D logfti +Xivfti 
k X

(fti 12- + Xi MI) 1 fftt III 20 5 

It is next assumed that ftj and fol for each i are of thesame order 
of magnitude. It then follows that XI will be small compared with 

fti. Expanding the logarithm in II1.20.5 into a series, we have, to 

first order, 

k Xi -V2\ 
log P - log C 1 2 = - I 
-') I11.20.6. 

Z, (ftl + I + Xi yet,) (ffti 

k 
X2+ XVftl 

k k 

But zj (xi ffti) = Zj (foi - ftj) = n - n 0. 

Hence 
k 

log P - log C Ej X21 and 

k 
2:j xj
 

P = e I III.20.7. 

From III.20.7, it is clear that P varies directly as the sum of k 
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normal independentvariates of unit variance which are subject to 
k 

the single constraint that I(Xi rf t-1)
 0. 
This is precisely 
2 (Chi-square) as will be seen in Chapter IV. 

k k (fol - fti)2 

Hence, 2= V, = 
;' i fa II1.20.8. 
z 

and is the probability of the sum of the squares of (k - 1) in­

dependent normal vaxiates each of unit variance. 

The criteriongiven in III.20.8 is known as the Chi-square test of 

goodness offit and is useful in testing the hypothesisthat a sample 

at hand came from a universe of specified type. 

The algebraic form of the distribution of )
 is 

I _1_%. (X2) 2 
P(z') = '-" (k e 111.20.9. 

2 2 
\ 2 

Using the table on page 220 for this function an application is 

shown in Chapter V, page 163. 

Thus far the underlying probabilityof success has been assumed 
constant. Suppose now that the probability of success is not con­

stant, but depends on what has previously happened such as the 

case of finding r white balls from an urn that contains np white 

balls and nq black balls when s balls are drawn one at a time from 

the urn without replacements. 

The solution of such a situation is given by the Hypergeometric 

Distribution. 

III. 21. Hypergeometric Distribution: Consider an urn in which there 

Are np white balls and nq black balls. Draw s balls one at a time 

without replacements. The probability, P,, that r (r 0, 1, 2, . .. ' S) 

of the s balls are white is 

(np)! (nq)! 

r! (np - r)! (s - r)! (nq - s + r)! 
P
7 
 Y" = , , I - - / 

n ! 

s! (n - s)! 
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(np)! (nq)! s! (n - s)! H1.21.1. 

(np - r)! (nq - s + r)! n! r! (s - r)! 

To illustrate: Consider the case of 100 vehicles approaching an 

intersection of which np = 30 are trucks and nq = 70 are not 

trucks. Consider any s = 5 of these vehicles one at a time. The 

probability, Pr.= P. that 3 of the 5 vehicles are trucks is 

30! 70! 5! 95! 

P3 27! 68! 100! 3! 2! = 0.117 

which means that 117 times out of 1000 sets of 5 vehiclesthe prob­
ability is that 3 vehicles out of 5 will be trucks. 

Now, let 

dy)
X = r + I and y (yr + y,.+,)/2 and - = Yr+1 - Yr 

(dx (x, y) 

Then, 

dy Yr s +nps-nq-1-r(n +2) III.21.2. 

dx(,, Y) (r + 1) (r + I + nq - s) 

From y = (yr + yr+,)/2, it is found that 

-1 nps +nq + I-s-r(nq + 2-np-2s) +2r2 

2 Yr (r + 1) (r + I + nq - s) III.21.3. 

Replacing r by x - -21, III.21.3. becomes 

I Idy\ 2s +2nps-2nq-2-(2x-1)(n +2) 
- W = 

dx nps +nq+l-s +(x- ')(nq +2-np-2s) +2 
Y (X - -2'-)' 

III.21.4. 

The equation given in III.21.4. is the equation of the system of 

curves which are continuous approximations to the law of prob­

ability given in 111.21.1. 

The curves are usually known as the Pearson system of fre­

quency curves which are the particular solutions of the differential 

equation III.21.4. 

The equation III.21.4., may be written in the form 

/dy
 y (x +a) III.21.5. 

b,) + b,. x + b2X2 
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which has 12 particular solutions or 12 specific types of curves 

dependent upon the values of the constants." 
The moments about the arithmetic mean of the distribution 

III. 2 L L, are 

spq (n - s) 

n - I 

spq (q - p) (n - s) (n - 2 s) 

(n - 1) (n - 2) III.21.6. 

spq (n- s) _ [n(n+l)-6s(n-s)+3pqfn2(s-2)-nS2+ 6s(n-s)j]
V-4 
 (n-1)(n-2)(n-3) 

nllr+i 
 I (I + E)r - Er1 [112 nP + s (q -p) [II + { spq (n - s) 
III.21.7. 

where E is an operator and means that 

E
tr 
 tir+j (r 
 0, 1, 2) 

The maximum term of III.21.1. is approximately5 

n III.21.8. 

V2 pqs (n - s) 

If in 111.21.6. and III. 21.7., n --* oo , the respective moments be­

comethe momentsof thebinomialdistributionwhichshows thatthe 

binomial or Bernoulli distributionis the limitingcase (or the case of 

a large or infinite universe) of the hyper-geometric distribution(or 

the case of a finite universe). 

111. 22. Correlation6: The theory of correlation is devoted to the en­

deavor of finding laws of relationship (dependence) between two 

or more variables. Suppose a group of individuals is measured in 

regardto a certain attribute. It is found that the individuals differ 

in their measurements.It is desired to explain these differences in 

terms of factors on which this attribute is dependent and to obtain 

laws connecting the attribute with one or more such factors. The 

better thelaw of connection explainsthe variabilityin the attribute 

in question, the higher is the correlation. 

To illustrate: One may wish to know whether the height of an in­

dividual can be explained or measured by the weight of an in­
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dividual. In other words, are tall people heavy and short people 
not heavy. It is well known that weight alone does not measure 
height or explain the difference in the height of individuals. 
In this instance there are more factors than the one factor weight. 

There are three main types of correlation: simple correlation, 
multiple correlation, and partial correlation. These will now be devel­
oped and discussed in the order named. 

The Correlation Coefficient r-Linear Regression or Linear Trend. 
The regression or trend line is necessarily the best fitting line in the 
sense of least squares. The line may be curved or straight. To start 
with, let it be assumed that the regression (trend) line is a straight 
line. The equationof this line is 

y = mx + b III.22.1. 

The values of m, and b must be determined and they are, respect­
ively, the slope and y-intercept of the line. The x and y values are 
observedin pairs and they are the coordinatesof any point on the 
line. The formula 111.22.1. describes an infinite number of lines, 
eachwith its m, as well as its b. No two differentlines have the same 
m, as well as the same b. If the lines are parallel, they have the same 
m, but differentb's. If the lines pass through the same point on the 
y-axis, they have the same b but different Ws. We assume that 
any one of the possible lines has the same weight as any other one 
in arriving at a particular line, namely, the line that fits the data 
best in the theory of Least Squares. The Principle of Least Squares, 
used to determine the line of best fit, states that the line of best fit 
for a series of values is a line such that the sum of the squares of 
the vertical distances from it will be a minimum. There can ob­
viously be only one line having this qualification. Another such 
line exists for the horizontal distances. However, the one for ver­
tical distances is sufficient for most practical purposes. 

In Figure IIIA., suppose that the line RR' is the straight line 
of best fit for the plottedpoints (scatter diagram) shown, and that 
its equation is 

y = mx + b III.22.1. 
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The y-distance, namely, y', of any point (xi, yj) from this line 

is equal to 

yj - (mxi + b) III.22.2. 

y 

(Xi'yP 

R' 

M. + b 

b 
go X 

FIGURE III. 4 

IIJUSTRATION OF PRMCIPLE OF LEAST SQUARES 

The sum of these distances squared must be a minimum. Sym­

bolically, 
n 

d2 (mxj + b _ y,)2 III.22.3. 

is to be a minimum. This necessitatesthat 

ad n 
- = + 2 (mxj + b - yj) 0 III.22.4. 
Ob 

and 

ad n 
- = + 2 xi (mxi + b - yj) 0 III.22.5. 
am 

From III.22.4.: 
n n 

Zi yj nb + m Eixl III.22.6. 
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where n equals the number of cases or number of points. From 

III.22.5.: 
n n n 

xi yj 
 b xi + m x? III.22.7. 

Equations III.22.6 and III.22.7 are so-called "normal" equa­

tions for finding the least-square straight line. The two equations 

can be solved simultaneouslyto find the unknownsm and b. These 
two equations are all that are needed to determine the equation 

of the line of best fit. This line gives the relationshipbetween the 

two variables x and y. 

The procedure can be illustrated by an example. The required 

calculationscan be done quite rapidlywith tables and a calculating 

machine. 

Example: Given the associated pairs of values for x and y: 

x: 3, 5, 8, 12, 17, 23, 30 

y: 1, 2, 6, 23, 40, 50, 60 

Using these values in equations III.22.6 and III.22.7, it is found 

that 
182 
7b + 98m 

3967 = 98 b + 1960 m 

Solving these equations for b and m, we find that m = 2.41 and 

b 7.78 whence 
y = 2.41 x - 7.78 III.22.8. 

is the equation of the best fitting straight line. From III.22.6 

mx + b - y = 0 III.22.9. 

The equation III.22.9. expresses the fact that the linear function 

(straight line) passes through the point whose coordinates are 

(x, Y) 

Now measure all the x's and y's from their respective means as 

origin and replace every x by its deviation x' from _x, and y by its 

deviation y' from _y. Then III.22.9. becomes, since b now is zero, 

y Mx, III.22.10. 

and III.22.7 becomes 

m n 1 X/2 n 

It xi' A = 0 
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from which 
n 
El xi yi np p 

III.22.11.G2 G2 
El XI'2 

It follows that 
Py 
_X/
G2X 

whence 
P 

YX y - (X___
O 111.22.12. 

It is important to note that is the computed value of y for a 
given x from the equation of the least-square line. For the line to 
be a regression (trend) line, it is necessary that _YX is thearithmetic 
mean (or close to being so) of the values of y associated with a 
given value of x. 

Similarly 

XY- x -
p 

ya2(y- y III.22.13. 

The coefficient p/a 2 gives the deviation in y from the mean y cor­
responding to unit deviation in x from the mean x, for when 
* - X= 1, Y" - y 
 p/a.,,2. Likewise, p/ay gives the deviation in 
* from the mean x corresponding to unit deviation in y from the 
mean y. 

But, in general, p/CF2y_* p/a,2,. This demands the necessity of 
altering the unit of measure so that unit change in x and y are of 
the same magnitude. Then 

Y.-Y= P x ­ X)( III.22.14. 
Ily ax ay ax 

and _Xy ­ p y:j III.22.15. 
ax 

Next, write 

p 
axay 
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the coefficient of correlation. Hence 
- - cry 
YX-Y==r (X--X) III.22.16. 

ax 
and 

ax 
xy- x =:= r -	 (y- y) III.22.17. 

ay 
ax

which are the regression (trend) lines. The numbers r Y and r 
ax ay 

are called the coefficients of regression or of the trend. 

Consider 

YX Y 
Y 

r S- (x ­ -X) or 
ay

y'= r - x'. 
ax ax 

Then 

d I-r- ay X )2 

I (Y G. 
n 

Y'? ­ 2 r 
n 

'Y E 
ax 

XI, y', 

a2 n 

+ r2 Y 'Y 
2 

ax 
X/12 


n 	 a2y - 2 r ay (nr ay ax) + r2 a2y (n o2x) 
ax a2x 

n a2y (I - r2) 	 III.22.18. 

Since d being the sum of squares is positive, we have 

n a2y (I - r2) > 0 and 

- 1 :!

 r -< I III.22.19. 

and 

r I when 
Y'XXII ay 

Now 
n 

np x'i y'j and XI, xi - -X; y', yj - Y ­

Hence 
n n 

TIP (xi - X) (Yi - Y-) (XI YO - I"X Y. 
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Hence 

El xi yl 
p _xy.n 

But 

r p 
Gx CY 

Hence 
n n 
jj:Kj Yj El Xi yi 

n n 
r 

ax ay n 
El X? El y? 

- (jE)2 /1
n - I _ 

-
(y)2 

n n n 
El (XI-X) (yl-_y) El Xi" yi" El Xi' yi 

III.22.20, 
n ax ay n n ax ay 

From this relation, it is fairly clear that r may be considered as 
the cosine of the angle between two vectors in Euclidean n space. 
Again, from this fact, it follows that - I :< r ::
 1. Also, r is the 
arithmetic mean of the products of the deviations of the corres­
ponding values from the respective arithmetic means when mea­
sured in standard deviation units; also, r is sometimes called the 
product-moment coefficient. 

The formulas useful in findingthe value of the coefficient of cor­
relation are as follows: 

(1) If the variables are in original units with respect to their 
natural origin, then 

n 
El xi Y1 

_xy Ill. 22. 21. 
n 

r 
ax ay 
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(2) If the variables are referred to a class mid-point as an origin 

and in terms of the class interval as a unit, then 

n 

ll xi yl 
__xy 
n III.22.22. 

r = ­
crX ay 

These formulas are readily obtained algebraically from III. 22. 20. 

To interpret r, it is necessary to use r2 which is called the deter­

mining coefficient. 

If r, say, equals 0.70, we find that r2 = 0.49 which means that 

49 per cent of the variability in the y-values is determined or 

explained by the potential determiningor measuring factor x and 

the linear theory connecting y with x. In other words, the theory 

used or tested is but 49 per cent efficient as an estimator or 

forecasting or predicting theory. 

III. 23. Basic theory of correlation. To explain the Basic Theory of 

Correlation let us suppose that we have given n pairs of values for 

the variables x and y. The problem is to determine the nature 

and degree of the dependence between the x values and their 

corresponding y values. 

To determine the amount of interdependence that exists be­

tween the pairs of variables it is convenient to represent them by 

points in a two dimensional Euclidean manifold (scatter diagram). 

To facilitate a description of the dependence we partition the data 

into classes. This is accomplished by selecting class intervals of size 

dx. We recall that the set of y values associated with a given value 

of x on an interval of size dx is called an x axray of y's. If it is de­

sired to describe the behavior of the expected values of the y val­

ues associated with the x values, it is necessary to find the equation 

of the curve y = f (x) that passes through these points. This curve 

is known as the estimate of the true regression curve. The limiting 

curve that is approached as dx tends toward zero is the true 

regression curve (trend) of y on x and is actually the locus of the 

arithmetic mean of arrays of y values of the theoretical distribu­

tion as dx tends toward zero. The description of the theoretical 
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law of behavior appertaining to the arrangement of y is the solu­

tion of the problem of statistical dependence (regression or trend

analysis) of y on x.

To illustrate: Consider the related value of minimum spacing,

center to center in feet, with speed in miles per hour.


Table III.4. is a correlation table which shows numerically as 
well as graphicallythe two-way distribution connecting minimum 
spacing, center to center in feet with speed in miles per hour as 
found by actual observation. The first question to be answered is: 
How dependent upon the speed of a vehicle is the minimum 
spacing? The answer to this question is found in interpreting the 
value of the determining coefficient which is the square of the cor­
relation coefficient. 

Substitutingin III.22.22 the required values from Table III..,4 
it is found that 

1 (xy) 
n 

r 
ax ay 

becomes 
47440 3321
 J-9849
 

13-36 F13365 1336 
r= 

58771 I- 3321
21/H113049 t-9849
2
1336 336 

y V 1336 

35.509 - 2.486) (- 7.372) 

Y44.090-6.18OV8
4.618-
54.346 

35.509 - 18.327 17.182 

(6.149) (5.502) 33.832 

0.5079 
 0.51 III.23.1. 

This result means that (0.5079)2= 0.2580 = .26 = 26 per cent 
of the variabilityin minimum spacingis explainedby or dependent 
upon the speed of the vehicle and the assumed linear connection 
between spacing and speed. In other words, it appears that speed is 
an unimportantor minorfactorfor determiningminimumspacing. 
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3--26 5 14 59 1-7 -4 -2 -2 -5 -6 -3 -1 -4 -5 -5 -1 -2 -
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6 2 2 

1 

----------------------

-------------- -----------

---------------------------

---------------------- ---

--

--

--

-------------

fy 

2 
3 
2 

2 
1 
3 
6 
8 
1 
5 

1 7 

23 
23 
20 
24 
32 
35 
54 
51 
61 
61 
82 
85 

129 
126 
118 
153 
123 

67 
10 

1336 

y 

16 
15 
14 
13 
12 
11 
10 

9 
8 
7 
6 
5 

3 
2 
1 
0 

- I 
- 2 
-3 
- 4 
- 5 
-6 
- 7 
- 8 
- 9 

- 10 
- 11 
- 12 
- 13 
- 14 
- 15 

fy (Y) 

32 
45 
28 

24 
11 
30 
45 
64 
7 7 
so 
85 
40 
69 
46 
20 

- 32 
- 70 

- 162 
- 204 
- 305 
- 366 
- 574 
- 680 

- 1161 
- 1260 
- 1298 
- 1836 
- 1599 

- 798 
- 150 

9849 

fy (Y,) 

512 
675 
392 

288 
121 
300 
405 
512 
539 
180 
425 
160 
207 

92 
20 

32 
140 
486 
816 

1525 
2196 
4018 
6440 

10449 
12600 
14278 
22032 
20787 
11172 

2250 

113049 

5 
8 
5 

14 
-1 

4 
4 
9 
1 

1 2 
3 7 

3 
8 

24 
24 
40 

102 
76 
75 

129 
64 

0 
8 

- 43 
- 345 
- 401 
- 410 

- 1001 
-1047 
- 603 
- 122 

3321 

YNX 

80 
120 
70 

168 
- 11 

40 
36 
72 
7 

72 
185 

1 2 
24 
48 
24 

- 102 
- 152 
- 225 
- 516 
- 320 

- 56 
344 

3105 
4010 
4510 

12012 
13611 

8442 
1830 

47440 

M M ID C
 10 H XC M N H 10 

H 0 0 CO 0 H H C11 M 
O 10 t
 00 C
 0 cl M 

'2 2 -HI 

.0 00 

0'O 

00 

CO 0c 
H 
'DM 

10HN10NH 
Mo=IDM 
CqMcl M 

MCM 
C4 d
 

C
 C
 

0 
10 H 

0 C
- -,6v N 

'O- -:5 6 
cl
 M 

-C; -

 -06 -6 -L-: -4 - - - - - -4 0 H
 
IM 
 10 ,
 

- -M 
0 

- - - -C
.M0 
10 10 

-0 
C ',M 



115 STANDARD DISTRIBUTIONS 

This means that either there are several other factors which to­

gether would explain 74 percent of the variability or that there 

exists a possible single other factor or that the relationship is not 

linear. Of these, it appears that the former is the most likely. 

A second question that needs to be answered is: What is the 

equation of the linear law of relationshipwhich is useful to predict 

the expected minimum spacing when the speed is known. 

To answer this, it is necessary to use the regression equation 

III.22.16, namely: 

YX_ y 
 r!-y (x- X-) 
ax 

Substituting the values indicated by the use of Table IIIA. and 

III.23.1, it is found that 

22.008 
yx - 47.0 0.508 - (x - 22.0) III.23.2. 

12.300 

whence 

y, 0.909 x + 27.0 

The graph of this equationis shown in Figure III. 3. To illustrate 
the use of 11I.23.2, suppose it is desired to know the minimum 

spacing in feet if the speed is, say, 30 miles per hour. To answer 

this question, substitute 30.0 for x in equation III.23.2, whence 

the minimum spacing Y,, is found to be 54.3 feet. This means that 

the expected minimum spacing center to center in feet or on the 

average the minimum spacing center to center in feet is 54.3 feet 

when the speed is 30.0 miles per hour. 

A very important question now to be answeredis: How typical 

or reliable is the expected minimum spacing of 54.3 feet. This 

question will be answered in article 111.25. 

III. 24. Coefficient of Regre88ion: Consider 
n 

11 n., (yy.,X, - mxj - b)2 

For f to be minimum 

af 0 and Of = 0. III.24.1. 
am Lbb 
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From equations III.24.1., 
n ny - ­

nx, yn'jXi Y-inx Xi yn.,/n 
M 

n n 
n't X2i El nx, x2j/n 

n 

Y-1 (xi yj)/n r ax: av ay
a-

ax ax 

III. 25. Standard Deviation of Arrays: 

Consider 
S2 n 2 

n E r ay x 
1 (Y ax i) 
n ay n Y2 

zi y?- 2rE1(ylx1) + r, 51, x2 
1 ax I 

= n ay 2 nr2 a2 y + nr2 Cy2y 

 n cr2 k2)

y 

Hence: 
s2 

y 
= ay r2) III.25. 1. 

SY may be regarded as a sort of average value of the standard 
deviations of the arrays of y's and is sometimes called the root-
mean-square error of estimate of y, or more briefly, the standard 
error of estimate of y. The factor (I _ r2)
 is called the coefficient 
of alienation or the measure of the failure to improve the estimate 
of y from the knowledge of correlation. 

if SY is regarded as a function of x, say S (x), the curve 

y = S W ay 
is called the scedastic curve. Its ordinates measure the scatter in 
the arrays of y's in comparison to the scatter of all the y's. If S (x) 
is a constant, the regression system of y on x is called a homoseed­
astic system. If S (x) is not a constant, the system is said to be 
heteroscedastic.For a homoscedasticsystemwith linear regression, 
Sy 
 ay (I - r2)1 is the standard deviation of each erray of y's. 
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Similarly, for the dispersion of x on y, we have S;2 = aX2 (I - r2). 

Going back to the spacing speed illustrationgiven in article 111I.22 

where it was found that the expected spacing is 54.3 feet when the 

speed is 30.0 miles per hour. To determinethe dependabilityof the 

value found for spacing, it is necessary to obtain its standard 

error or its measure of variability. This is given by III.25.1, 
namely: ff S2Y is the variance of the expected values for spacing, 

then 
2 

SY = (Ty (I 

Substitutingthe values for a2y and r2 found earlier in this chapter, 

we find that 
S 

2
Y = 484.35 (1 -. 2580) 

= 359.39 

whence Sy = 19.0 

This means that on the average, when the speed is 30.0 miles 

per hour, the spacing differs from the expected spacing of 54.3 

feet by 19.0 feet. ID other words, the probable or expected spacing 

lies between 54.3 - 19.0 = 35.3 feet, and 54.3 + 19.0 = 73.3 feet 

when the speed is 30.0 miles per hour. It is fairly obvious that the 
ability to predict the spacing knowing the speed is very poor and 

of very little practical value. 

III. 26. Correlation Ratio: Non-Linear Regremion: From III.25. it 

may be seen that 2 

r2 = I - Sy-lay III.26.1. 

if SY ;== 0, r = 1 and all the dots on the scatter diagram fall 

exactly on the line of regression y 
 r Sy-. If Sy ;--- ay, r 
 0 and 
ax 

the regression line is of no aid in predicting y from an assigned x. 

Now, let S'Ybethemean square of the deviationsfrom the means 
of arrays. Then S,, 82 when the regression is linear and 
S/2 2 y y 

Y =P S. when the regression is not linear. This fact suggests the 

use of 


2 SY,2 III.26.2.
YX 62 

Y 
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where 71y. is the correlation ratio of y on x and S12 is the mean 

square of the deviations from the means of arrays whether these 

means are near to or far from the proposed line of regression. For 
lineax regression of y on x, we have n2yx 
 k2. Similarly for x on y, 

we have 
'2 

2 I- X 
My = ex III.26.3. 

To illustrate the finding of the value of correlation ratio which 

actually is the true measure of correlation, the procedure is to find 

7)2YX from equation III.26.2. where 
12 

2 -SY. 
7)YX aY2 

As was explained, (Sy')2 is the mean square of the deviationsfrom 

the means of arrays, namely 

f, S2 + f2 82 . ..... + f, S2 + ... + f2 2 
(SY')2 1 2 n I k sk 11I.26.4. 

where f, is the frequency of the ith verticalarray - the array when 

x has the value xi and s2 is the variance of the ith array. From 

III.26. 1., it is clear that fj 0, is actually the sum of the squaresof 

the deviations of the values for the ith array of y's fromthe arith­

metic mean of the i th array of y's. 

Making use of Table I111.4., it is found that, beginningwith the 
first array of y's, namely, the array of y's when x = 0.95,thenthe 

second array when x = 2.95 and so on..., 

f, S21 f2 S22
2 (40.5 - 23.1)2 + 1 (44.5 - 27.0)2 + 

1 (36.5 - 23.1)2 + 3 (40.5 - 27.0)2 + 

4 (28.5 - 23.1)2 + 4 (36.5 - 27.0)2 + 

19 (24.5 - 23.1)2 + 6 (32.5 - 27.0)2 + 

23 (20.5 - 23.1)2 + 22 (28.5 - 27.0)2 + 

6 (16.5 - 23.1)2 24 (24.5 - 27.0)2 + 

1355.9 13 (20.5 - 27.0)2 + 
2 (16.5 - 27.0)2 

= 2364.7 
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Similarly, it is found that 

f3 S32 
 4108.8 fl, s152 = 59855.0 
f4 s 42 = 5272.5 fl, S162= 33508.7 

f5 S62 = 5489.2 fl, S1,2 = 45523.0 
f, 8 62 = 3891.0 f18 S182 = 49788.0 

f, S72 8295.6 f19 8192= 14902.0 
f8 S 82 1069.8 f2oS 2D2 19500.7 

f9 sq
 22976.7 f2l 8212 6950.7 
floS 2 15353.5 f22 S22 2578.510 2 

fil Sil2 18564.5 f23 S232 2068.6 

f12 S122 40986.3 f24 S242= 7680.0 
f13 S132 50938.5 f25 S252= 37.1 

2 2
f14 S14 29733.6 f26 S26= 288.0 

f27 S272= 0 

Substituting the values of the s? just found in III.26.1, it is 

found that 
(SI)2 = -453080.9 = 339.1 

Y 1336 

From Table IIIA, and III.23.1 it was found that 
S2 = Y 16 [84.618 - 54.346] 

= 16 (30.272) = 484.4 

Substituting the values just found for (SY')2 and S2Y in III.26.2., 

it is found that 
2 = 1 - 339.1 = I - 0.70 = 0.30 
YX 484.4 

Previously in III.23.1 it was found that, on the hypothesis of 

linear regression, the determining coefficient r2 = .26. If the re­

gression is not linear, we have found that the determining ratio ­

the real and proper measure of correlation - is 0.30. A legitimate 

question: Is the difference between the determining ratio and the 

determining coefficient large enough to justify the rejection of the 

hypothesis of linear regression? The technique to answer this 

question will be shown in Chapter IV. 

The reader is ,cautioned not to follow the usual practice of tac­

itly assuming linear regression and in this sense finding the value 

of r2. The proper procedure is to find 
2 first. Then it should be 
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determined whether 
2 is large enough to justify the obtaining of 
the actual regression (trend) function as well as whether 7)2 is large 

enoughto indicate that a significant correlation exists. The former 
is discussed and shown in 111.29. and the latter in Chapter IV. 

In the case just illustrated it is true that 12 = 0.30 indicates 
real correlation, but it is much too small for predicting or estima­
tion purposes. It is also true that there are sufficient grounds, as 
will be seen in III.29. to reject the hypothesis of linear regression. 

A mean square of the deviations in each array is a minimum 
when the deviations are taken from the mean of the array. Hence, 
the (SI)2 in III.26.2. must be equal to or less than S2 in III. 26. I. 

y y
for the same data, since the deviations in III.26.1. are measured 
from the proposed line of regression. Hence, we have shown that 

'-_ -
2 > r2 
It follows from III.26.2. that 71Y. ::

 1. 

If regression of y on x is linear, 7)'YX - r2 found from the sample 
differs from zero by an amount not greater than fluctuations due 
to random sampling. A comparison of 7]2YX- r2 with its sampling 
error is a useful criterionfor testing linearityof regression. A better 
and more powerful method, however, to test linearity of regression 
is by the use of the Analy8i8 Of Variance. 

III. 27. Multiple Correlation: Suppose we have given N sets of cor­
respondingvalues of n variables XP X21 ... I X-' Now separate the 
values of xi into classes by selecting class intervals dX21 dX31 ... I 

dxn of the remaining variables. 
The locus of means of such arrays of xi's in the theoretical dis­

tribution, as dx2l ... dxn approach zero is called the regression 
surface (trend) of xi on the remaining variables. We now assume, 
for convenience, that any variable, xj, is measured from its arith­
metic mean as origin. Let cFj be its standard deviation and let rpq 
be the correlation coefficient of the n given pairs of values of xp 
and Xq. We now seek to find b12, bi3, ... ' bin of the linear re­
gressionsurface 

xi = b12 X2 + b13 X3 + + bin Xn + C I[II.27.1. 
of xi on the remaining variables so that xi computed from 
III.27. I. will give the best estimates in the sense of Least Squares 
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of the values of x, that correspondto anyassigned values of X21 ... I 

xn. It follows that 

U 
 Z (xI - b12 X2 - b13 X3 bin xn - 0)2 III.27.2. 
shall be a minimum. This gives us for the linear regression surface 

n Riq Xq 
XI CI Yjq 	 III.27.3. 

2 R,, aq 

where 	 rl,, r.2, ... , r,, 

r2j, r221 r2n 

R 

full rn2l . .	 .I rn, 

and Rpq is the cofactor of the pth row and qth column of R. 

If the dispersion al-2. - - - - of the observed values of XI from 

computed values is defined as 

a21.23. n 	 -1 Z (observed x, - computed XJ)2 III.27.4. 
n 

then, it can be proved that 

a21-23 ... n P. III.27.5. 

R_111 

We are next interested in the dispersionof the estimated values 

given by III.27.3. Since the mean value of the estimates is zero, 

when the origin is at the mean of each system of variates, it can 

be shown that 

C12 2 i-R 
E
al 	 III.27.6. 

The square of the multiple correlation coefficient rj-2, ... n of 

order (n - 1) of XI with the other n - 1 variable is given by 

r21-23 ... n 
 1 - I R 
 III.27.7. 

Rjj 

The analysis of datafurnished by J. S. Ellerby, SafetyDirector, 

Fort Belvoir, Virginia will serve as an example of multiple cor­

relation. These data consist of the following information on 440 

drivers: 
XI = Road Test 

X2 
 Years of Experience 
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X3 = Reaction Time 
X4 
 Distance Judgment 
X5 =Driver Information (Written test) 

Let us assume that the road test is a measure of driver ability 
and let it be our problem to determine whether each of the other 
tests individually or collectively measure driving ability. 

The first step is to determine the simple correlation between 
each of the tests. The procedure for this is that followed in the ex­
ample of finding the correlation between speed and minimum 
spacing. 

These correlations are shown in Table IIIA Before using these 
results to obtain a multiple correlation let us consider the signifi­
cance of these simple correlations. It is noted immediately that 
none of them is large enough to be significant and therefore our 
conclusion is that none of the tests is of value as a measure of 
driving ability. 

Table 111.5 
SiimPLECoRRELATioN oF DRIVERTESTS 

(1) (2) (3) (4) (5) 
Road Test Years Reaction Distance Driver 

Experience. Time Judgment Intormation 

Road Test r,=1.0000r,,=.0476 r,,=.0257 r,,=.05514r,5=0.2608 

(2) 
Yr8. 

Experience r2,=.0476 r22=1.0000 r2,=.006157 r2,=.00101 r2,=-0.4603 

(3) 
Reaction 

Tim,e r,,=.0257 rl2=.006157 r,,=1.0000 r,,,=-.0404 r35=-.1027 

(4) 
Distance, 
Judgment =.055141r_=.00191 r,,=-.0404 r,,=1.0000 r,,=.1568 

(5) 
Driver 

Intormationr, =u.2608rr,2=-0.4603 r,,=-.1027 r,=.1568 r,5=1.0000 
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At least one of the correlations is opposite to what one might 
expect. A driver with an increase in experience apparently knows 
less about driving since the correlation is negative (-.46). How­
ever, since r2 
 (.462) 
 .21 
 21 per cent, only this amount of the 
variable in drivingknowledge may be said to be explained or de­
pendent upon experience, consequently it may be said that there 
is little or no connection between driving ability and experience. 

We would not of course be justified in concluding from this one 
study that drivers' tests have no value, for it may be that an of the 
drivers tested are good drivers and their visual acuity, reaction 
time, and other capabilities are well within the safe range. For ex­
ample, the total range of reaction time was from .350 to .560 
seconds. A driver with a reactiontime much slower than .56 might 
be an accident prone driver. It is fair to say that it is quite a bit 
more likely than not, however, that these deductions are valid. 

The next question to be answered is that of whether the tests as 
a whole give any indication of driving ability, i. e., whether the 
sets of dataX21 X3 X4, and x5 taken together furnish us with a 
measure of driving ability. To answer this question, we make use 
of the theory of multiple linear correlation. The first step in the 
analysis is to find the multiple linear regression equation. This is 
done by substituting the values for the r's from Table III.5, in 
equation III.27.3. and solving by determinants. 

x [R12 X2 , R13 X3 _,_ R14 X4+ RI, x5 
_r KI, (73 RII (74

1K11 (72 RI, (Y51 

1 R12 1 R13 1 P114 1 Ris 
X 2 X3_ j
_X4--k-X52 RI, 3 RI, 4 11 5 11 

r2, r2, r24 r25 r2, r22 r24 r25 

r., r., r.4 r35 r3l r32 r.4 r.5 

r4, r., r4, r4, r., r.2 r44 r45 

+ I r., r.3 r54 r., 1 r5, r.2 r., r55 

2 r.2 r23 r24 r25 2- -i r22 r23 r2, r2, -3 

r.2 r., r.4 r35 r., r., r.4 r35 

r.2 r4. r" r4, r4. r4. r44 r45 

r.2 r., r.4 r., r., r., r.4 r5, 
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r2]L r22 r2, r2r, r2l r22 r23 r.4 

r3i r32 r.3 r.5 r., r.2 r., r.4 

r4, r42 r4. r45 rAj r42 r4. rA4 

+ 1 r.1 r,52 r5, r5, X4 - I r., r.2 r53 r54 -5 

4 r22 r23 r24 r25 5 r22 r23 r24 r2, 

r.2 r., r.4 f35 r.2 r., r.4 r., 

r42 r4. r44 r45 r.2 r4. r4, r45 

r.2 r., r,4 r,5 r52 r.3 r.4 r5, 

_ f.0092 x2 -. 0460 x. -. 0030 x. 

 	 -9.3281 I +_ - +_ i­

.7532 11.4434 .7532.0452 .7532 10.2713 

-. 2722 X5 

.7532 2.73671 

= -. 0016 X2 + .0253 X3 + .0036 X4 + 1.2318 x.. 

The next question that is to be answered is how reliable are the 

expectedvalues of the xj's as determined from the regression equa­

tion when sets of values for X21 X3
 X4, and x,, are known. The 
square of the multiple correlation coefficient when properly inter­

preted is the answer to this question. 

This is equation II1.27.7 

r2 	 R 
1.23 . . . air,,)n 

We first find R by substituting the values from Table III.5 for 

its determinant and solving. 

r1l r.2 rJL3 r14 r,5 

r2l r22 r2. r24 r25 

R r., r.2 r., r.4 r35 .6774 
r4l r42 r43 r44 r4r, 

r., r52 r., rr,4 r., 

Therefore, since R,, .7532 as determined above, 

I P. .6774 
31.2345 	 - = 1 -. 8994 = .1006

.7532 

Since this value, .1006 means that only 10.06 per cent of the 

variability in road tests is explained by the composite knowledge 
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of the factors, years of experience, reaction time, distance judg­
ment, and driver information, it may be concluded that the com­
posite result of these tests is practically worthless as a measure of 
driving ability as shown by the road test. 

Another question to be answered is what is the standard error 
in the expected values of x. This standard error is a measure of the 
total variability that is not explained, or in other words, is not de­
pendent upon the sets of values of X21 X31 X41 and x,. 

The standard error in the expected value of x, obtained from 
the regression equation III.27.5 is equal to 

a12. ( R 
2345 
 ali 

al.2345 (TI [_R = 9.3287 6774VRI, Y.7532 

 0.8847 
= 88.47 percent 

Since 

(
R R 2 R 2 
a, + a RI, 1

RI,) RI, 
we may say that the proportionalpart of the total variability (a')I 

that is not explained in terms of X21 X3) X4, and x, is R = .8994 
B11 

89.94 per cent and that the explained variability


R

I - - = 1 -. 8994 
 .1006 = 10.06 per cent. 

RI, 
As a check: 

+ I- R) =.8994 +.1006 = 1. 
RILI RI, 

III. 28. PartialCorrelation: Very often we wish the degree of corre­
lation bet*een two variablesx, andX2 when the othervariablesx3, 

X42 ... 
xn have assigned values. Thus, we define a partialcorrelation 
coefficientr22-.4 ... n Of x., and X2 for assigned X31 X41 x. as the 
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correlationcoefficient of xi and X2 in the part of the populationfor 

which x3, X41 ... xn have assigned values. A change in the assigned 

values may lead to the same or different values of r12-34 ... n, 

Assume that the theoretical mean or expected values of xi and 

X2 for an assigned X31 X41 . . ., xn are 

xi 
 b13 X3 + b14 X4 + + bin xn III.28.1. 

X2 
 b23 X3 + b2d X4 + + b2n xn 
respectively. 

Then, a partial correlation coefficient r'12'.4... 11 is the simple 
correlation coefficient of residuals 

XI-34 ... n 
 xi - b13 X3 - b14 X4 - bin xn III.28.2. 

IX2-34 ... n 
 X2 - b23 X3 - b24 X4 - b2n J 

limited to the part of the population n34 ... n of the total n for 

which x3, X41 . . ., xn are fixed. 

Suppose further that the populationis such that any change in 

the assignment of values to x., X41 - - -, Xn does not change the 

standard deviation of X1-,4- .. n nor of X2.34 ... n nor the value of 

r,2..4 n, Such a population suggests that we define 

r.2-34 ... XI-34 ... n X2.34 ... n III.28.3. 

nal-.4 ... n a2.34 ... n 

where the summation extends to n pairs of residuals, as the partial 

correlation coefficient of xi and X2 for all sets of assignments of 

X3 - - -, Xn-

If the population is such that r'.2-34 ... n is not the same for each 

different set of assignments of x., X41 ... xn, the right hand member 

of III.28.3. may still be regarded as a sort of average value of cor­

relation coefficients of xi and X2 in subdivisions of a population 

obtained by assigning x., X41 - - -, xn or it may be regarded as the 

correlation coefficient between the deviations of xi and X2 from 

the corresponding predicted values given by their linear equations 

on x3, X41 ... Xn- It can be shown that 

r - - - R12 III.28.4.
12-34 ... U 

(RI, R22)' 

To illustrate, we make use of the data for the Driver tests prev­

iously given in Table III. 5 and set ourselves the problem of finding 
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the correlation between road test and years of experience under 
the assumption that each is influenced to some extent by reaction 
time, distance judgment and driver information. If each is thus 
influenced, the obtainment of the simple correlation coefficient 
between the road test and driver experience, assuming the exis­
tence of such influence, gives us spurious correlation. Partial cor­
relation between road test and years of experience is the theory of 
correlation that removes the influence of reaction time, distance 
judgment, and driver information. Substituting the probable 
values of the R's for III.28.4, we find that 

- R12 

r.2-34 (R11 R22)
 

Wherein R12 and R,1 have the values already determined and R22 
has the value .8960 found by substituting values from Table 
111.5. and solving the determinant. 

r,1 r.3 r.4 r15 

r3, r.3 r34 r35 

R22 r4l 	 r43 r44 r45 = -8960 
r,,. r.3 r,,, r., 

hence 

-R12 .0092 -. 0092 -. 0092 
r.2-3. -	 - _=__ - - - _0.001 

(R11 R22) R7532) (.8960) V.6749 .821.5 

therefore, there is practicallyno partial correlation. 

III.29. 	Regression (Trend) Lines: Let 
Y;== ao + a, X + a2X2 + + a,,XP 111.29.1. 

be the equation of expected values of Y that are associated with 
the various values of X. It is desired to know the values of the a's 
such that the value of U given by 

n 
U g--- Y-i (y, -	 ao - ajL xi - a2X2 apXP)2 III.29.2. 

IL 

is a minimum. 
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This requires that 

OU n n n n xl+p
 O 
- 
 E, (xi yi) - ao'y,, xi - a., xl,+' - ap
Oaj 

III.29.3. 

whence 

a, = AJ(P) 111.29.4.Am 

where 

(lo, 14. ..... P-P n, Efxx, Vxxp, Efxy-x 
(11, IL21 .... I 
'P+l EfXXI EfXX21 .... EfXXP+ll vxxy" 

A(P) 

J
&XP, EfXXP+I,.... Ef.XV, EfXX2P­
[1p, [4p+j, 
12p YJ 

III.29.5. 

and A(P) is the determinantobtained by substitutingthe producti 
moments RI, t4pi for the (j + 1)th column in A(P). 

It is not too difficult to show thatthe regression (trend) equation 
may be written in the form 

Y, 
RI, 
1111, 

I, 
P-O, 
(11, 

X . 
[Li. 
tL21 

...... 
...... 
..... I 

XP 
tLp 

[4P+1 
 0 111.29.6. 

14pl) P-P, h+11 ..... I IL2P 

Now consider 
Y=b,,Po+bPl+ ... +bpPp 

and demand that Z (Pj Pk);== 0 when j 4= k, where the P's are 
polynomials in X, Pj being of degree j. 
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Again, minimizing


X=X,

Y=YU 
Y (Y-b0P0-bjP,-...-bpPr,)2 II1.29.7. 
X=X
Y=Y1 

it is found that 

Y, (yPj) - bo E (PoPj). . bp Y- (PpPj) 
 0 III.29.8. 
Since E (Pj Pk) for j =p k is zero, III.29.8. reduces to 

(y Pj) - bj Y_ (PJ2) 0. I11.29.9. 

Hence bj is simplydeterminedbyPj andifinfittinga curve ofdegree 
p, it is desired to proceed a step farther and add a term bP+1 PP+1) 
the coefficients bo, . . ., bp already found remain unaltered. This 
method is known as the method of orthogonal polynomials. 

The use of orthogonalpolynomials gives a convenient method of 
determining step by step the goodness of fit of the regression line. 
Consider 

U (y - bo Po - bp Pp)l 
(y2) - 2 bo Y- (y PO) -. . . - 2 bp E (y Pp) 

+ b2' E (PO2) +... + b2 E (pP2)
0 P 

But, from III.29.9., we may express E (y Pj) in terms of E (PJ2). 

Hence 
U
'
',(y2)-b
'E(p2)_.. -b 2 E (pP2) 

0 P II1.29.10. 
This shows that the effect of any term bj Pj is to reduce U by 

b2 E (p2) and the effect of this termonU is an independentmatter. 
Again, if it is found that the addition of any term bj Pj does not 
reduce U significantly, the conclusion is that the term is redundant 
and therefore not necessary or that the fit is good enough. 

It is now necessary to obtain the expressions for the various 
orthogonal polynomials. To this end, let 

P 
PP 
 EJ CPJ xi I11.29.11. 

0 
In III.29.11., there are (p + 1) unknown constants. Hence, in 

all the polynomials up to and including those of order p, there are 
-' (p + 1) (p + 2) constants. The orthogonal relations up to and2 
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including order p provide I p (p + 1) conditions on the C's. It
2 

follows that ' (p + 1) (p + 2) - -1 p (p + 1) 
 p + I constants 
2 2 

are assignable at will. For convenience, take one constant for each 
P and assignit so that the coefficientof XJ in Pj has the value unity. 
In other words, put 

Cii .
 I III. 29.12. 

Rewriting 111.29.11., we get 
Po = 1 
P3 = Clo + X 

PI 
 C20 + C21 X+ X2 
P3 ;7-- C30 + C31 X + C32 X2 + X3 III.29.13. 
................. 
PP = CPO + CP1 x + CP2 X2 +... + XP 

From the orthogonal relations 
PP Po 
,E PP 
 0 
PP P, = 0 III.29.14. 

This system, 111.29.14., is equivalent to 
E PP = 0 
x Pp = 0 

xP PP = 0 III.29.15. 

Substituting the values of the P's from 111.29.13., it is found that 

CPO k + CP1 
Ll ++ Cp, P-1 11P-l + 4P = 0 
CPO Ill + CPl 42 ++ CPI P-3. ILP + 4P+1 = 0 111.29.16. 
................. 

CPO 
tP-l + CPl tLP ++ CPI P- I V-2 P-2 + 42 P- I = 0 

From these equations,

A(P)


C'Pi pi III.29.17. 
A(P-1) 

where A(P-1.'has the same meaning as before and A(P) is the minorPi 
of the term in the last row and (j + I)th column of A(P). It follows 
that 
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V-01 V-1.1 ...... I'D 
V-11 IZ21 ..... I 14+3. 

PP 
 A(r'-1) III.29.18 
[LP-11 [LPI ..... I t42P-1 

1, X . ...... XP 

It is clear, because of diagonal symmetry of AM that Cjk = Ckj-
III.29.19. 

From III.29.15. 
Y (PP2) (X ppp) 

and hence from III. 29.18. if we multiply the last row and sum 

(PP2) n AM III.29.20. 

Likewise 
(y PP) n A P(P) 

A(P-1) I11.29.21. 

Finally, from III.29.9. 

bp - A P(P) III.29.22. 
AM 

and the problem is completed. 
Specifically, if V,0 
 1, 
q = 0, 
L, 
 1, then 

Po= I 

I OLX 

P, x 
1 III.29.23. 

I 0 1 

0 1 tZ3 

P2 I X -X2 .= 2­
1 x 113 x - I 

0 101 

1 01 IL3 

0 1 th 144 

1 113 [14 
L5 

P3 I XX2 X3 

I 0 ' 

01 113 

1113 114 
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1 
L2 
- 2- 3 _ 1) X3 
L4 
t3 X2 

114 t13 


t5 _ 
t2 + 
+ (V-3 4 k - 1432) X +Gtr, - 2 k [L3 + V-3) 

To illustrate: From Table 111. 4. the regression data are obtained 

and placed in the first three colums of Table III. 6. 

Table 111. 6. 

(1) (2) (3) (4) (5) (6) (7) 

x fx f.

. fxx-
7. fxx f.X2 

23.1 1 55 1270.5 55 

27.0 3 75 2025.0 6075.0 225 675 

30.6 5 74 2264.4 11322.0 370 1850 

30.7 7 70 2149.0 15043.0 490 3430 

39.7 9 63 2501.1 22509.9 567 5103 

35.8 11 35 1253.0 13783.0 385 4235 

38.4 13 50 1920.0 24960.0 650 8450 

40.6 15 33 1339.8 20097.0 495 7425 

47.1 17 41 1931.1 32828.7 2009 11849 

44.9 19 37 1661.3 31564.7 703 13357 

47.8 21 51 2437.8 51193.8 1071 22491 

55.4 23 63 3490.2 80274.6 1449 33327 

54.7 25 81 4430.7 110767.5 2025 50625 

51.0 27 45 2295.0 61965.0 1215 32805 

51.9 29 133 6902.7 200178.3 3857 111853 

55.4 31 93 5152.2 159718.2 2883 89373 

58.4 33 109 6365.6 210064.8 3597 118701 

55.9 35 86 4807.4 168259.0 3010 105350 

59.5 37 46 2737.0 101269.0 1702 62974 

61.0 39 49 2989.0 116571.0 1911 74529 

53.3 41 16 852.8 34964.8 656 26896 

79.1 43 11 870.1 37414.3 473 20339 

60.9 45 8 487.2 21924.0 360 16200 

68.5 47 6 411.0 19317.0 282 13254 

45z8 49 3 137.4 6732.6 147 7203 

48.5 51 2 97.0 4947.0 102 5202 

36.5 53 1 36.5 1934.5 53 2809 

62814.8 1566949.2 29430 850360 
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To obtain the various regression (trend) functionsfor the data of 

Table 11I.4,, it is necessary to compute the following values, the 
obtainment of the first four being shown in columns (4), (5), (6), 

(7) of Table 11I.6.: 

ZfxY,, 62814.8 jf,,X4 917057464 

lfxX-Yx 1566949.2 Zf,,X5 32132903385 
EfX 29430 EfXX6 1180837278435 
1fxX2 850360 Z&X2Y, 47175422.8 

Zf,,'S
x' 2867513.03 XfxXVT'x 1535815847.1 

YfX3 27146214 

First, it is necessary to compute the value of the bj's from 
I11.29.22. These are found to be as follows: 

A(00) JV,01 I 
 IEfxYxl 62814.8 
bo 
- - 47.017 II1.29.24.

AM 1336
IV-01 

k Rl n ZfxYx

AM= jf'x Ef"XY


b, 1 1[Al P'll 
 I x 

AM I k "I. I n 7'f.X2 

Ll V-2 Ef"x Ef"x 

1336, 62814.81 
29430, 1566949.2 (1336) (1566949.2) - (29430) (62814.8) 

1336, 29430 (1336) (8-50360) - (29430)(29430) 

29430, 850360 

244804567.2 
= Y6
995606
0 =0.909 M.29.25. 

k 111L Rl n D.IX Efy.

111 112 I'll EfXX Ef,,X2 Z&X-V,,


L(2 ZfXX2 EfX3 JfX1Y7X

2) IL2 113 tL21 

b2 = A(2) Zf,,X E&X2 
k 
'l 142 n 
Ill P-2 113 Z&X Z&X2 J:&X3 

112 
'3 114 ZfX2 Z&X3 jfX4 
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1336, 29430, 628151 

29430, 850360, 15669491 

860360, 27146214, 47175423 

1336, 29430, 8503601 

29430, 850360, 271462141 

850360, 27146214, 9170574641 

1336 850360, 15669491 - 29430
 29430, 15669491 

 27146214, 471754231 850360, 47175423 

1336 850360, 27146214 1 - 29430 29430, 27146214
 
127146214, 917057464 
850360,917057464 

+ 	 628115 29430, 850360 
850360, 27146214 

+ 	 850360 29430, 8503601 
850360, 27146214i 

(1336) (- 24206) (108) - (29430) (55901) (106) 

(1336)(42912) (109) - (29430) (39049) (108) 

+ (62815) 	 (75801) (106) 

+ (850360) (75801) (106) 

1176482 

 
 = - 0.01713 II1.29.26. 
68673633 

['0 ILl [12 V01 n f.X 2: f.X2 fy. 

tLl 112 113 I'll 	 E fXX 1: f.X2 F , f.Y,3 fXXV. 
112 t13 114 1421 fXX2 f.X3 f.X4 f.X2y. 

(3) 1131 Y, fX3 fX4 fXX5 fX3y,
bs 	 L3 113 114 115 7-­


A(3) fX fX2 fX3

Ill k 113 	 n 

Ill (12 IL3 k 	
E f,,X f
 

X2 &X3 &X4 

Z fX2 fXX3

t2 IL3 114 [L5 	 fX4 fXX5 


t3 114 115 
t6 fX3 fXX4 fX5 fX6 

111.29.27. 

Note: To evaluate determinants, the reader is referred to "A Text­

book of Determinants, Matrices, and Algebraic Forms," by 

W. L. Ferrar, Oxford University Press, 1941. 



135 STANDARD DISTRIBUTIONS 

Next, it is necessary to obtain the various orthogonal poly­
nomials. They are 

n J&X 1336 29430


11 X I X


n 1336 1


1336 X - 29430 X - 22.03 III.29.28.

1336


n fX fX2

fXX fXX2 &X3


P2 X X2 
n f,,X 
&X &X2 

EfXX fX21_Xl n E fxX2 + X2 n E f'X&X2 Z &X31 IEf,
X E f',X3 f"X Z &X 2
 

n Y, f.X 
E f,,X E f_X2 

29430 850360 1336 850360 + X2 1336 29430 
1860360 27146214 X 
 29430 27146214 29430 850360 

1336 29430
 
29430 850360 

75800948420 - 11241247104 X + 269956060 X2 

269956060 
280.7899 - 41.6410 X + X2 III.29.29. 

The linear regression (trend) function is 

Y.'= bo + b, P, ;== bo + b, (X - 22.03) 
47.017 + 0.909 (X - 22.03) 

26.99 + 0.909 X III.29.30. 
which agrees with result obtained in III.23.2., p. 115 as it should. 
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The quadratic regression (trend) function is 

Y,, 
 bo + b, PI + b, P2 

471017 + 0.909 (X - 22.03) - 0.01713 (280.7899 - 41.6410 X + X2) 

= 22.18 + 1.622 X - 0.01713 X2 III.29.31 

Likewise 
n Z fXX Z fXX2 Z fX3 

I fXX E fX2 Z &X3 Z fXX4 

.E fX2 F, fX3 E fXX4 E fX5 

X X2 X3 
P3 n E f.X Z fXX2 III.29.32. 

fXX 5, fXX2 'V fXX3 
2.j 

fX2 1: fX3 Y, fXX4 

Since the effect of adding the second degree term is rather 

small, it follows that the addition of the third degree term is 

negligible and redundant. In III.29.30. and 111.29.31., Yx is the 

probable or expected minimum spacing for a particular speed X. 

Suppose X 
 10 miles per hour, then from III.29.30. we find 

that the expected minimum spacing in feet is Yx = Y10 = 36.08 

feet, and from III.29.31., we find YX 
 Y10 = 36.69 feet. 

Again, if X = 30 miles per hour, III.29.30. gives Y3o = 54.26 

feet and III.29.31. gives Y30 = 55.42 feet. 

If X = 50 miles per hour, III.29.30. gives Y50 
 72.44 feet and 

III.29.31. gives 60.45 feet. 

It is to be emphasized that because of the scarcity of data be­
yond a speed of 40 miles per hour, it is not possible or scientific­

ally sound to use the regressionfunctions to predict the minimum 

spacing beyond that speed. In any event, however, the use of the 

quadratic function, III.29.31., gives the better estimate of the 

minimum spacing in so far as we are able to use either theory. For 

the lower speeds, III.29.30. gives an underestimate and for the 

higher speeds an overestimate. 
T
JLt also appears very likely that the actual minimum spacing 

is not expressiblein terms of a single regressionfunction. In other 

words, it appears that there may be one regression function for 

lower speeds and a different one for higher speeds. 
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CHAPTER IV 

SAMPLING THEORY 

Reliability and Significance 

IV. 1. Objective. In this chapter it is proposed to show how to 
use the mathematicalmodels of distributionthat were developedin 
Chapter III as a basis for making inferences from a limitednumber 
of happenings that will apply to all such happenings. This process 
of reasoning from the particular to the general is known as in­
ductive inference and in a broader sense is called 8ampling theory. 

Inductive inference is a means by which scientific progress 
comes about. The research worker obtains data through planned 
experiments or through the observation of natural happenings 
such as the occurrence of accidents at certain types of highway 
intersections.From the data obtainedhe infers that certain things 
are so. But it is well known that exact inductive inference is 
theoretically impossible. One of the functions of statistics is to 
provide techniques for making inferences and for measuring the 
degree of certainty of the inferences. 

In order to make the idea of inference somewhat more concrete, 
let us suppose that we have observed the speeds of one hundred 
vehicles at a given location and have found that five were travel­
ing over seventy miles per hour. We might estimate from this 
sample that five per cent of all vehicles travel over seventy miles 
per hour, but we would not be very sure as to the correctness of our 
estimate for we know that a different sample of this limited size 
would undoubtedly lead to a different estimate. At best the 
sample contains but partial information about the law of behavior 
of the total population of drivers. Population is used in its statis­
tical sense meaning a collection of results or objects. Summary 
numbers calculated from the sample accurately characterize the 
sample, but the important question is, how good are these same 
summary numbers when used as estimates of the characteristics 
of the population? What is the error committed by the use of 

138 
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sample characterizing numbers in place of the associated popula­

tion characterizing numbers? 

The role of statistics in providing a measure of the uncertainty 

of inferences from samples is confined to sampling errors. It must 

be assumedthat the experimenterhas guarded against accidents in 

recording the data. In gathering data the first consideration is the 

obtaining of a random sample. 

IV. 2. Random Sampling: In order to demonstrate what is meant 

by randomsampling let us supposethatwe have a given population 

and that the attribute or attributes of the population to be mea­

sured are specified. The problem is to find a sampling method for 

the given population and the stochastic variable being measured 

that will yield a randomor unbiased sample. The answer lies partly 

in theory and partly in techniques that have been proven in 

practice or may have to be devised to meet a given situation. 

The first requirementis that there be no obvious connection be­

tween the methodof selection and the properties being studied.The 

method and the properties must be independent in so far as our 
prior knowledge enables us to make them so. 

To meet the second requirement that the sample be a random 

selection, we rely on our previous experience with a given method 

as well as our intuition to justify its use on new occasions. A 

very reliable method of drawing random samples consists of con­

structing a model of the population and samplingfrom the model. 

Actually, randomnessis largely a matter of intuition.The theory 

of probabilityconsiders the set of all possibledifferentsamplesthat 

may be drawn from a specified universe and enables us to derive 

theirdistributionlawfor any desiredcharacterizing summary num­

ber. This theoryrequires thatit be made certain that the sampling 
method will tend to yield all possibledifferent sampleswith equal 

frequency. A method that does this is called a random method. 

IV. 3. Distribution of Sample Arithmetic Means. For the purpose of 
illustrating the law of the distributionof sample arithmeticmeans, 

let us suppose that we have a normal universe, and that from this 

universe, we draw a large number of samples all of the same size, 
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n. If the samples are random and drawn independently, then the 
distributionof sample arithmetic means is also normal. Further­
more, the arithmetic mean of the distribution of sample arith­
metic means is the true arithmetic mean of the universe and the 
standard deviation of the distributionof sample arithmeticmeans 
is the standard deviation of the universe divided by the square 
root of the size of the sample. Expressed symbolically: If X.,, X21 

X31 ... I Xi' ... Xk are the sample arithmetic means and if X is 
the arithmetic mean of the universe from which the samples were 
drawn, then 

- I Xi 
X - k IV.3.1. 

If a is the standard deviation of the universe of measures and 
s-R is the standard deviation of the distribution of sample arith­
metic means, then 

a 
sX = -_ . IV.3.2. 

yn 
The value R-x is frequently called the standard error of the arith­
metic mean. Actually it is the measure of reliability of the arith­
metic mean and is in fact the expected error committed when a 
particular sample arithmetic mean is used in place of the true 
arithmetic mean of the universe. The smaller the expected error, 
the more reliable or the more precise is the sample arithmeticmean. 

The measure of reliability given by IV.3.2. is exact in theory but 
not usable in practice because the value of a depends upon the 
population which is not known. Consequently it is necessary to 
obtain from the sample an unbiased estimate of the universe 
variances, indicated by the symbol&2. This is equal to: 


2 	 = S2 IV.3.3­
n - I 

where S2 is the variance of the sample. Substituting this value a2 

for r52in IV.3.2.. we obtain 
s 

sx 	 IV.3.4. 

which is usable as the standard error of the arithmetic mean. 
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It is to be noted that IV.3.3. gives an estimate of universe 

variance. 

Using the data of Table 11.1. it was found that the arithmetic 

mean was 38.2 milesper hour and the standard deviation, 8.9 miles 

per hour. In 11.22., page 50, it was also found that the expected 

speed of 38.2 miles per hour was in error at most 23.3 per cent 

with a measure of confidenceof 71 per cent. To find out how near 

the true value of the arithmetic mean our sample mean is, we 

substitute in IV.3.4. and find that 

8.9 
v
 = 0.52 Miles per hour. IV.3.5. 

Vn- 1 299 

which is the expected error in the sample arithmetic mean. In 

other words, it is 68.27 per cent certain that the true arithmetic 

mean in the universe has a value between 38.2 - 0.5 
 37.7 and 

38.2 + 0.5 
 38.7 miles per hour. (68.27 is the per cent of area 

contained within one standard deviation on each side of the 

mean). In this case the maximum expected relative error is 

0.52/38.7 
 1.3 per cent with 68.27 per cent certainty. In like 

manner it is 95.45 per cent certain that the maximum relative 

error does not exceed 2.6 per cent and similarlyit is 99.73 per cent 

certain that the error does not exceed 3.9 per cent. The conclusion 

then is that the sample arithmetic mean is fairly reliable (precise) 

but as found before, it is not usable as a typical or characterizing 

speed. 

IV. 4. Inference Concerning Population -Mean. Let [i be the popu­

lation mean and X the sample mean. It is desired to test the hypo­

thesis: The sample whose mean is X could have come from a 

population with mean ti. If this is so, how certain are we that 

it did? This question is answered byusing the t-distributionwhere 

in this case 

t=1 X-[k I IVAJ. 

S
x 

For example: Could our sample with arithmetic mean of 38.2 

miles per hour have come from a population whose arithmetic 
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mean is 40 miles per hour? Substituting the values already found 

in IV. 4. I., we have 

t 38.2 - 40.0 1.54 

0.52 

Making use of the t-table in "Statistical Methods for Research 

Workers"5 with in this case n - I = 299 degrees of freedom it is 

found that 5 per cent of the time the difference as expressed by t 

would be at least 1.97. Only one degree of freedom is lost because 

the only restriction is that the deviations are taken from the 

mean of the sample. However, our value of t 
 1.54 is less than 

1.97. Hence it is concluded that on the 5 per cent level of sig­

nificance we have insufficient grounds to reject the hypothesis. 

In other words, if the hypothesis is rejected, it would be rejected 

when it is true slightly more than 5 per cent of the time. This 

means that we would have a slightly greater than 5 per cent 

risk in rejecting the hypothesis. To putit in another way the odds 

are a bit less than 95 to a bit more than 5 per cent in favor of re­

jection of the hypothesis. The level of significance and risk are 
synonymous, for the level of significance is the probability that 

the hypothesis is true and its complement is the probabilitythat 

the hypothesis is not true. 

IV. 5. Confidence Limits. Since it is impossible to estimate or 

predictthe true value exactlyit is necessary to obtain two numbers 

between which the true value will fall. These two numbers are 

known as confidence limits. To obtain them, it is necessary first 

to determine the value of t associated with the relevant degrees 

of freedom (number of possible values variable assumes minus 

numberof rigorous conditionsor constraints the values must obey) 
and a desirable probability level of significance. 

The sample arithmetic mean may be greater or less than the 

populationarithmetic mean. From IV.4.1, it was found that 

t 
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It is not hard to see from this equationthat ---I- t = (X - [t)/s-, or 

-4- ts- IV.5. I. 

which gives the two values (confidence limits) between which the 
true sample arithmeticmean will fall. These values are based upon 

the specific degrees of freedom and level of significance as de­

manded by the subjective problem. The limit of significance and 

the degree of reliabilitymay be of any desired value. 

To illustrate: Suppose we have a sample whose arithmetic mean 

is 52, whose standard deviation is 5 and whose size is 101. It is de­

sired to find the confidence limits on a 5 per cent level. 

Making use of the t-tablewith (n -1) =. 100 degrees of freedom 

and IV.5. I., it is found that 

52; 1.98 ( 5) 
10 

52 0.99 

whence the two values of [t are 51.01 and 52.99. 

This means that it is 95 per cent certain that the true arithmetic 

mean of the universe lies between 51.01 and 52.99. Again, it is 

95 per cent certain that if we take the arithmeticmean of 52 as the 
value of the population (true) arithmetic mean the error com­

mitted will not exceed 0.99/52 
 .019 
 1.90 per cent. If the 

error thatmay be tolerated (which is obtained fromthe subjective 
material) is not less than 1.90 per cent, then for the pertinent 

purpose the sample arithmeticmean may be used asthe population 

arithmetic mean. Otherwise, it may not be used. 

IV. 6. Difference Between SampleArithmetic Means. Frequentlythe 

arithmetic means are computed from two independent samples. 

The question that needs to be answered is: Are these samples in­

dependent and from the same normal universe? To answer this 

question we again make use of the t-distribution, but in this case 

we use for t the value V given by 

I X1_ K21 1V.6.1. 

V II(NI + NO (NI S2 + N2 S2)1 2 

V (NI N2) (NI + N2 - 2) 
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where 
X, is the arithmetic mean of the first sample 
X2 is the arithmetic mean of the second sample 
82

. is the variance of the first sample 

281 is the variance of the second sample 
N, is the size of the first sample 
N2 is the size of the second sample 
N, + N2- 2 are the degrees of freedom and 

(NI + NO (NI S21 + N2 '2 is the standard deviation of the 
V (NjN2) (Nj + N2- 2) 

distributionof differences between independentsample arithmetic 
means from the same normal universe. 

To illustrate: Suppose we have the following two samples: 

Sample I Sample II 

Arithmetic mean xi 
 145 i2 
 150 
Standard Deviation SI_ 
 5 82 
 6 

Number of Individuals N, 
 12 N2= 20 

We wish to test the hypothesis: The difference between the 
sample arithmetic means is insignificant, therefore, these two 
samples are independent and from the same normal universe. 

To make the test we use IV.6.1. Substituting the given values 
in IV.6.1., it is found that in numerical value 

t/ 1145 - 1501 5 5 
- - -- - = 2.35 

1/32 [12 (25) + 20 (36)] 4.53 2.13 
V 240 (30) 

Making use of the t-table with (N,. + N2- 2) (12 + 20 - 2) 
= 30 degrees of freedom it is found that when t 2.042 the prob­
ability that the two samples came from the same normal universe 
is 0.05 and when t = 2.750 the probability is 0.01. The value of 
t = 2.35 lies between the 5 per cent and I per cent levels of signi­
fioance, hence, we conclude that the two sample arithmetic means 
are significantly different on the 5 per cent level but not so on 
the 1 per cent level. This means that the odds are between 95 and 
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99 to between 5 and I in favor of rejecting the hypothesis that 

the two samples came from the same normal universe. 

It is important to note that if the two means had not b'een sig­

nificantly different it would have been necessary to investigate 
the significance of the difference between the variances. The 

method of doing this will be shownlater. 

If the variances or the means, or both, are significantly different, 

we have groundsto reject the hypothesis; but if the variances and 

means each are not significantly different, we do not have grounds 

to reject the hypothesis. This is true because the normal distri­

bution is a two-paxameter family of curves. 

IV. 7. Size of Sample for Arithmetic Mean. Suppose we require, 

within a specified degree of certainty, that the sample arithmetic 
mean shall differ from true mean by not more than a given e. 

Consider again 

t - X IV.7. 1. 
sx 

Since the error is e, it follows that X - 
t Hence IV.7. 1. 
becomes 

t= 	 IV.7.2. 
B-X 

Rewriting IV.7.2., we obtain 
N - I S2 

_t2 2. IV.7.3. 

Suppose we wish to know the size of the sample such that it is 

95 per cent certain that the sample mean is within 2 units of the 

true mean of the universe. In this case, if the variance of the 

sample is 100, s2 = 100, S2 
 4 and from IV.7.3., 

N 	- I 100 
t2 

- 4 = 25 

From the t-table, it is found that when N 101, N-1 
t2 

N - I 
25.508 and when N = 91, 

t2 
22.727. Hence, the size of 

the sample is 101. 
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IV. 8. Reliability of Sample Standard Deviation. The test for the 
reliability of a sample standard deviation is defined as X2 (Chi-
square) and is 


2 NS2 
Cy2 IV.8.1. 

where Nis the size of the sample, S2 is the sample variance and e 
is the population variance. Thus X2 is the sum of the squares of 
N-1 independent normal deviates divided by their common 
variance. 

This criterion is useful for comparing a sample variance with a 
population variance. 

To illustrate: Take a sample of size 10 whose variance is 25, 
couldthis sample have come from a universe whose variance is 16 

Using IV. 8. 1., it is found that 

10 (25) 250- = - F-- 15.63 
16 16 

From a X2 table for (N - 1) = 9 degrees of freedom, it is found 
that the probability of X2 > 14.684 is 0.10 and the probability of 

> 16.919 is 0.05. 
It follows that a population (universe) having a variance of 

16 could yield a sample with variance of 25 or more between 5 avd 
10 times out of 100. 

Sometimesit is desirable to obtainfrom the sample an unbiased 
estimate of the true universe variance. This is accomplished by 
using 

e= N S2 IV.8.2. 
N-1 

which in this case becomes 

10 
a - 25 == 27.8 

9 

which means that the expected value of the universe variance is 
27.8 when. the sample varianceis 25 and the size of the sampleis 10. 
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IV. 9. Significance of Difference Between Sample, Varianm. The 
test here is to determine, with respect to variance, whether two 

samples are independent and from the sample normal universe. 

The criterion is the F-test which is given by 

S' IV.9.1.S12 
2 

2
NIS12 2 N2S2 

where S - and S 2' - and the degrees of freedom 
N1- I N2_ 1 

for S21 is N, - I and for S2
2 

is N2 - 1. Having two unbiased esti­

mates of variance, always usefor S12thegreaterof thetwo variances.I 
To illustrate: Let there be given two samples of 10 and 12 indi­

viduals respectively. Let their variances be 10 and 5 respectively. 

Are these two samples independent and from the same normal 

universe? In other words, is the variance 10 significantly greater 

than the variance 5? 

Substitutingin IV. 9. 1., it is found that F becomes 

F NIS12 / N2 
S2

2 
10 (10) 12 (5) 

N1- I N2_ 1 

2.04 

From the F-tablewith n, = N3. - I = 9 degrees of freedom and 

n2 = N2- I = 11 degrees of freedom, we find that at the 5 per 
cent level of significance F is 2.90 and at the I per cent level 
of significance F is 4.63. 

Hence we conclude that, since our value of F is 2.04 which is less 

than the F for the 5 per cent level, the larger varianceis not signi­

ficantly greater than the smaller. In other words, there are not 

sufficient grounds to reject the hypothesis that the two samples 

could have come from the same normal universe. 

IV. 10. Significance of a CorrelationCoefficient. The question here is: 

Could the sample whose coefficient of correlation is r have come 
from a non-correlated universe? We use 

t ON-2 IV.10.1. 

VI _r2 

where the degrees of freedom are N - 2. 
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To illustrate: Suppose we have a sample of size II whose coeffi­
cient of correlation is 0.60. Could this sample have come from a 
non-correlated universe? 

Substitutethese values in IV.10.1., and we obtain 

t 0.60YII-2 
VI -. 36 

1.80 
- = 2.25 

.8 
From the t-table with 9 degrees of freedomwe find that at the 5 

per cent level of significance t = 2.262 and at the I per cent level 
of significance t 
 3.250. Hence we conclude that a little more 
than 5 per cent of the time the sample could have come from a 
non-correlateduniverse and a little less than 95 per cent of the 
time, it could not. In other words, the odds are about 95 to 5 in 
favor of rejecting the hypothesis that the sample could have come 
from a non-correlated universe. 
. In the case of a multiple correlation coefficient, if we wish to 
test whetherthe sample came from a non-correlated universe, the 
criterionis 

2
F
_ ri. 23 . . . n/(M IV.10.2. 

r21.2. .n)/(N m) 

where m. is the number of parameters in the regressionfunction, N 
is the size of the sample and N, = m - 1, N2 
 N - m are the 
respective degrees of freedom. 

To illustrate: Assume that r,.23 
 0.60 and that the regression 
function is a plane that is, m. = 3 and that the size of the sample 
is 103. 

Substituting in IV. 10. 2., we have 
.36/2 28.1 

.64/100 

From theF-table we findthat atthe 5 per cent level, F = 3.09 and at 
the I per cent levelF = 4.82 when n, = m - 1 = 2 andn2=N-m 

100. Hence we conclude that there are ample grounds to reject 
the hypothesisthatthe sample came from anon-correlateduniverse. 
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To test the hypothesis concerning a partial correlation coeffi­
cient the procedure is the same as that for a simple correlation 
coefficient with the exception that the number of variables held 
constant must be substracted from the size of the sample N. 
Hence, if k-variables are held constant the test is 

2 --- k__
F r,2.34 ... n/1 IV. 103 . 

k
r,2.3-4./(N -k- 1) 
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CHAPTER V 

SOME APPLICATIONS OF


STATISTICAL METHODS


V. 1. Objective.This chapter illustrates some of the applications of 

statisticalmethods to proble 'Ms of most interest to traffic engineers. 

Usually a statisticalapproachismore, rationalthanany other and leads 

to a better understanding of the factors involved. The methods 

apply to all types of traffic problems, but firstwe shall study those 

that have to do with highway capacity. These problems are of 
primary concern, for they are connected with the main purpose 

of a highway which is to serve traffic. 

V. 2. Confusion As to Meaning ofHighway Capacity. Before attempt­

ing any analysis, it is necessary thatcertain termsbe defined. There 

is some confusion as to what is meant by highway capacity. This 

is brought out by the Highway Capacity Manuall, which states 
that the term perhaps most widely misunderstood and impro­

perly used in the field of highway capacity is the word capacity 

itself. Considerable work went into the preparation of this manual, 

and it offers the most authentic and complete informationextant 

on capacity. In Part 1, Definitions, is found the statement that 

"the term capacity without modification, is simply a generic ex­

pression pertaining to the ability of a roadway to accommodate 

traffic." The manual gives three levels of capacity: 

1. 	 Basic Capacity: "The maximum number of passenger cars 

that can pass a given point on a lane or roadway during one 

hour under the most nearly ideal roadway and traffic con­

ditions which can be attained." 

2. 	 Possible Capacity: "The maximum number of vehicles that 

can pass a given point on a lane or roadway during one hour 

under the prevailing roadway and traffic conditions." 

3. 	 Practical Capacity: "The maximum number of vehicles that 

can pass a given point on a roadway or in a designated lane 

150 
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during one hour without the traffic density being so great as 

to arouse unreasonable delay, hazard, or traffic conditions." 

Prevailing roadway conditions include roadway alignment, 

number and width of lanes. 

From a practical standpoint, speed should be included in any 

definition of traffic capacity. The driver is interestedprimarily in 

the amount of time it takes himto arrive at his destination.Perhaps 

capacity, meaning vehicles per hour, should be supplementedby a 

dimensionless index number similar to the Reynolds number in 

hydraulics. This number would indicate critical limits. 

Since the term capacity has a variable meaning, we shall in most 

cases use the word volume and define it as the number of vehicles 

passing a given point per unit of time. Density will refer to the 

number of vehicles in a given length of lane. With these definitions 

Average Volume 
 Average Density times Average Speed. 

V. 3. Theoretical Maximum Capacity (Volume). The amount of 

traffic per unit of time depends on the speed and the spacing 

between vehicles. The greater the speed the larger is the volume, 
and the greater the spacing the less is the volume. Therefore, 

Volu__ - Speed ­
Spacing 

This same reasoning applies to any number of lanes in the same 

direction, but with more than one lane, passing takes place, which 

adds another factorto be considered. For the sake of simplicity,we 

shall first take up the theoretical capacity of a single lane. 

In general, anyone who has observed traffic knows that as 

speeds increase, the spacing between vehicles increases. If the 

spacing increases at a greater rate than the speed, then there is an 

optimum speed that gives a maximum volume. If the spacing in­

creases at a rate equal to or less than the speed, then the higher 

the speed the greater the volume. The question of minimum 
spacingneeds to be examined critically. 

The original assumption was that drivers should and did main­

tain a'safe stopping distance behind the vehicle ahead. This safe 

stopping distance was based on the possibilitythat the car ahead 
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might stop instantaneously. This, of course, practically never hap­

pens for it can take place only through some unusual occurrence 

such as the head-on collision of two vehicles. That the original 

assumptionof minimum spacing persists is evidenced by an article 

in Traffic Engineering for August, 1950, by Dr. Victor F. Hess, 
Physics Department, Fordham University, New York.2 It should 

be mentioned that Dr. Hess is deriving a formula for safe travel 

at a maximum efficiency. This article states accurately that the 

stopping distance includes (1) a, the distance the vehicle travels 

during the "reaction time", (time interval between the stop signal 

observed and the instant the brakes are applied) and (2) b, the 

distance the vehicle travels after the brakes are applied. The dis­

tance a is proportionalto the speed of the car v. 

a 
 tv 

Distance b, the braking distance, is the distance required to 
absorb the kinetic energy of the vehicle (1-/, MV2), and therefore 

must vary with the square of the velocity; that is 

b 
 kV2 

in which the constant k is a factor depending upon the efficiency 
of the brakes and the coefficient of friction between the tires and 

the pavement. The stopping distance is equal to 

a + b 
 tv + kV2 

in which t = reaction time, which is usually taken as .75 second. 

V. 4. Stopping Distance And Minimum Spacing. Observations 

have proved that the stopping distance is not the minimum spac­

ingbetween vehicles.This fact may also be arrived at by inductive 

reasoning. 

If we assume that two vehicles are mechanically equivalentand 

traveling at the same speed, then one can be stopped in the same 

distance as the other, and if they both start to stop at the same 

instant, they will come to rest at the same distance apart as when 

the brakes were applied. The fact that the brakes cannot be 

applied at the same time results from the rear driver's needing 

time to react. What takes place is that the driver sees the car 

ahead start to stop and then reacts and applies his brakes. This 
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reasoning leads to the conclusion that the minimum spacing be­

tween vehicles consists of the distancerequited for reactionplus an 

additional distance which the driver maintains as a safety factor. 

This factor of safety distance may be quite small. 

From photographicobservations of vehicles traveling in queues 

so that each one could be assumed to be traveling at minimum 

spacing, it was found that the average minimum spacing in feet 

was approximately s = I. 1v + 21 in which v 
 speed in miles 

per hour*.3 The factor 1.1 corresponds to the reaction time of 

.75 seconds if the speed is given in feet per second. The 21 feet is 

the spacing when v 
 0, and includes the length of the vehicle. 

This factor was determined in 1933, for a given composition of 

traffic and would evidently not apply in all conditions. It may be 

noted that if the spacing is expressed in time, it tends to be a 

constant. At 20 m.p.h. the time spacing would be 1.46 seconds; at 

30 m.p.h., 1.2 seconds; and at 40 m.p.h., 1.1 seconds. 

Observations in urban traffic have shown that the average 
minimum spacing between vehicles expressedin time is practically 

a constant, regardless of speed. In one case, it was found to be 
1.1 seconds for all speeds which were 10W.4 

In Part 3 of the Capacity Manual, Figure I shows the minimum 

spacings given in the table below. These spacings, if we assume a 

reaction time of .75 seconds, may be divided into a reaction-judg­

ment distance plus a braking distance. 

Table V. I 

Observed Reaction Additional Ratio of Ratio of 
Speed Minimum Distance Braking Braking V21S 

Spacing .75 Seconds Distance Distances 

10 44 11 33 33/3,, = .87 102 /202 = 0.25 
20 60 22 38 38/47 = '81 20 2/3,2 = 0.45 
30 80 33 47 47/64 = -73 302/402 = 0.56 
40 108 44 64 14/85 = .75 40'/,502 = 0.64 
50 140 55 85 

Coupare, with the formula s = 0.909 v (III. 23.2) which was based on 
data which did not include zero speeds. 
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The braking distances for stopping shouldbe proportionalto the 

square of the speeds, but as shown in the table, the minimum 

spacings are not proportional to this amount. This is additional 

evidence that minimum spacings do not depend on braking ability. 

V. 5. Interpretation of Minimum Spacing Formula. The formula 

s = 1. I v + 21 would give a maximum traffic flow of about 4000 

vehicles per hour per lane. This, of course, is never realized except 

momentarily. If a stream of traffic were moving at this minimum 

spacing, the slowing or stopping of any vehicle would immediately 
affect all following vehicles. The formula is not given because of 

its practicability but because it points to two significant facts. 

a. 	The volume increases with speed, but apparently approaches 

a maximum point at about 40 miles per hour where the con­

stant 21 ceases to be significant. 

b. 	The minimum spacing depends primarily on "reaction­

perception-judgment" time. 

V. 6. Limiting Factors. To summarize: The factors that limit the 

capacity of a highway are: 

I .Necessary minimum clearance between vehicles. 

2. 	 Slow moving vehicles that retard others, when passing is not 

possible, due to lack of space on the opposite lane or to re­

stricted sight distance. 

3. 	 Reduced overall speeds caused bythe physical features of the 

highway, the mechanical characteristics of vehicles, or the 

desire of drivers. 

These factors need to be studiedin as much detail as possible if we 

are to reach a clear conception of the problem of measuring the 

ability of a highway to accommodate traffic. 

V. 7. Additional Relationships of Spacing and Speed. In a study 

made in Ohio in 1934 4 it was found that there is a straight line re­

lationship between average density in vehicles per mile (spacing) 
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and average speed. As the density increases, the speed decreases. 
Expressed in the form of an equation 

Speed 

Density 
where k is a constant for a given roadway and composition of 

traffic. If this relationship is true, and it was based on observations 

of over 220 groups of 100 vehicles each, it means that with a given 

highway and composition of traffic the potential capacity range 
can be obtained by getting the speeds at a low density and at 

a high density since two points determine a straight line. 

Speed
That the relationship = k may be only approximately

Density 

true is indicated by informationgiven in Figure 5, page 31, of the 
Highway Capacity Manual. 

This figure indicates that there is a straight-line relationship 

between speed and volume of vehicles per hour. The equation of 

50 1 I 
ee Speed - F 

0 4 4 

39 3 
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20 
W
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the curve for "the majority of existing highways" as nearly as 
may be judged from the Figure, is 

S = 43 -. 009 V, 

where S equals speed in miles per hour and V equals volumes 

60 

50 

Ck­

0 40 

0-­

201 
0 

1 
2 4 6 

1 
8 10 12 14 16 18 20 

Total Traffic 
(Hundreds) 

Volume -Vehicles Per Hour 

FIG7JRE V. 2

AVERAGE SPEED OF ALL VEHICLES ON LEVEL, TANGENT SECTIONS


OF 2-LANE RURAL HIGHWAYS


(Figure 6, page 31, "Highway Capacity Manual", Used by Permissions of Bureau of Public 
Roads, U.S. Department of Commerce.) 

LettingD 
. density in vehicles per mile of roadway, V = D -S, 
so that 

S 
 43 -. 009 V 
 43 -. 009 D -S 
or 

43 
S 1+.009D 
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By plotting speed against density Figure V.3. is obtained. The 

graph has very little curvature being nearly a straight line. Hence 
for practical purposes it may be assumed with slight error that 

speed varies directly (i. e. lineally) with density. It appears that 

this may be as nearly correct as the assumptionthat speed varies 

directly and lineally with volume. 

50 

30 

CX 

10 

10 20 30 40 so 60 70 

Den3ity in Vehii:le3 per Mile of Roadway 

FIGURE V.3 

AVERAGE SPEED or, ALL VEHICLES ON LEVEL, TANGENT SECTIONS 

OF THE MAJORITY OF EXISTING 2-LANE MAIN RuRAL HiGHwAys 

Returning to the 19344 report it will be notedthat in FigureV.I. 

(taken from page 468 of the report) the point that is marked "free 

speed" indicates that practically no drop in speed on the two-lane 

roadway was observed until the volume reached about 400 ve­

hicles per hour. The figures near the curve show the number of 

groups of 100 vehicles each for which the point marked is the 

weighted average. The maximum possible volume was not ob­
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served directly, but was obtained by assuming that the curve was 

a straight line. The "free speed" for the curve shown was 43.8 

m.p.h. This point is indicated to be about ten units to the right 

since no noticeable speed drop was observed until the volume 

reached about 400 vehicles per hour. The maximum possible 

volume would come at the mid-point of the curve and would equal 

46 195 
-	 X - 
 2,300 (approx.) vehiclesper hour. That the mid-point
2 2 

of the curve gives the maximum volume is easily proved. 

Let S,,, = maximum speed and DM maximum density, then 

Slope of SM

DM


Let x=. varying values of D, then V S - X SM) x 
DM 

SX X2 

Differentiatingwith respect to x 

dV S",
- = S - 2 x 
dx DM 

SM 
For maximum volume S - 2 x - = 0 

DM 

DM

whence, X - = midpointof the curve.


2


If this straight-line relationshipholds, then the maximum capacity 

varies over a small range, since the end points of the line are fixed 

by the maximum average speed and the minimum spacing which 
have small variations. 

V. 8 Volume and Speed.
 If volume'is plotted against speed, the re-
suiting curve is given m Figure VA. This curve shows that there 

is a maximumvolume and also that there are two speeds that give 

the same volume. At the lower speed, there is considerable time 
loss, Figure VA 
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FIGURE VA

SPEED IN MILES PER HOUR CORRESPONDING TO A GivEN VoLUmB


IN VEHICLES PER HOUR, ON A 2-LANE HIGHWAY


These curves bring out the fact that capacity needs to be ex­

pressed in terms of both volume and speed. At maximum volume 

there is always a considerable time or speed loss. The maximum 

volume is evidently not a design volume. 

The Capacity Manual gives a great deal of evidence that there 

are definite relationships between speeds and volumes. This is 

brought out by numerous curves which show such information as 

the number of drivers desiring to pass compared to the number 

that have an opportunityto pass, the total percentage of the time 

that desired speeds can be maintained, and the point at which 

drivers become influenced by the presence of vehicles ahead of 

them. Using the facts set forth in the manual, it is our purpose to 

see if there is a rationalexplanation of the interrelationshipsof the 

different phases of the behavior of drivers that can be expressed 

mathematically. 
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FIGURE V.5 

VERICLE TimE Loss DUE TO CONGESTION ON A 2-LANE HiGHwAy 

V. 9. The Nature of the Problems of Highway Traffic. We have dis­
cussed some of the elements of the problems of highway capacity, 
but have said very little about the nature and variability of these 
elements. It is this variabilitythat makes it difficult to solve the 
problems involved. If all vehicles traveled at the same speed, or if 
all people reacted in the same time interval, or if all drivers main­
tained the same spacing at the same speed, the solutions would be 
comparatively easy. 

There is nothing new about the idea that the behavior pattern 
of drivers is a stochastic variable. One of the writers found in 1933, 
as already mentioned, that the minimum spacing depended prim­
arily on reaction-timewhich psychologists have long recognized as 
a stochastic variable.3 Mr. John P. Kinzer assumed in 1934, that 
the traffic distribution on a roadway followed a "random" or 
Poisson distributions In England, Mr. William F. Adams found 
that free flowing traffic conformedso well to the distributiongiven 
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by a random series that it might be described as "normal." That 

the time spacingsbetween vehicles follow a random series in urban 

traffic was reaffirmed by a study made in 1944-46.7 

V. 10. Spacing as a Random Series. The assumptionthat spacingin 

either time or distance units follows the "random" series furnishes 

a means of studyingthe nature of spacing. To satisfythe conditions 

of the Poisson series, a roadway would have vehicles scattered 

along it at random so that any vehicle would be completely in­

dependent of any other vehicle, and equal segments of the road 

would be equally likely to contain the same number of vehicles. 

Granting that these conditions exist, the total number of vehicles 

on a roadway divided by the number of segments of road equals 

4 Cm" the average number of vehiclesper segment. Then, according 

to the Poisson series, the probability of zero vehicles appearing in 

a segment is 

/Tno
 
e 
-0! 

The probability of one vehicle appearingis 

-M /ml'\ 

The probability of two vehicles appearing is 

/M2\ 

e -M 
T! ) 

and the probability of n vehicles appearing is 

/M.\ 
e 
 _n! ) 

The sum of all the individual probabilitiesis 

/MO MI M2 m1a 

e -a k-0! 
+-

I ! 
+ -

2 1 
+ +-

n ! 
+

.... ) 
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But 
am ml mu 

em 
 +_ +.....

' -0! - I n! 

Therefore, 

e- -em = eO 
This simply demonstrateswhat we know, namely that the sum of 
all probabilities is unity, which means that an event is certain to 

Table V.2 

FITTING OF POISSON CURVE BY CHi-SQUARE TEST 

NUMBER OF VEHICLES APPEARING IN FivE-MINUTE INTERVALS 

Observations Taken on U.S. 20 Near Oaklawn, 1111nots. Data Supplied by the U.S. Public Roads. 
Administration.


1 2 3 4 5 6 7


0 
4-? 

t3 
'0'z

1&71 Z' 0 
4
' 

0 3 .009095 2.9831 -. 004 .000016 .000001, 
1 14 .042748 14.021 J 
2 30 .100457 32.949 -2.949 8.696601 .264 
3 41 .157383 51.621 10.261 112.805641 2.185 
4 61 .184925 60.655 .345 .110025 .002 
5 69 .173830 57.016 11.984 143.616256 2.519 
6 46 .136167 44.662 1.338 1.790244 .040 
7 31 .091426 29.987 1.013 1.026169 .034 
8 22 .053713 17.617 4.383 19.210689 1.090 
9 8 .028050 9.2001 

10 2 .013184 4.3241 -5.095 25.959 1.613 
1 1 0 .005633 1.847 
12 1 I .002206 1 .724 1 1 1 

Chi-square, y2 = 7.747 
m 4.75 seconds 
Degrees of Freedom = 9 - 2 = 7 
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happen or not to happen. In this case, it means that any segment 
is sure to contain zero or more vehicles since this covers all alter­
natives. 

V. II - Test of Goodness of Fit of the Poisson Series. The goodness 
of fit of the Poisson Series to a set of data may be testedby the 
Chi-square (e) test. A cumulative Poisson table of probabilities 
is used to obtain the theoretical frequencies. The data in the illu­
strative example consist of the numbers of vehicles appearing in 
five minute intervals on Route U.S. 20 near Oaklawn, Illinois. The 
volume of flow averaged about II 5 vehicles per hour. These data 
were made available by the Public Roads Administration. 

The first two columns in Table V.2. show the observed data. 
The figures in Column Three are taken from a Poisson table. 
Column Four is found by multiplying the figures in Column Three 
by the number of intervals observed (N = 328) to obtain the theo­
retical frequency. Column Five gives the differences between the 
observed or actual frequencies and the theoretical. Note that in 
this column the first two terms and the last four in Column Four 
have been combined to obtain a minimum actual or theoretical 
frequency that must be five or more. Column Six gives the square 
of these differences. The figures in Column Six divided by the 
theoretical frequency give the values in Column Seven. The sum 
of these values, 7.747, equals "Chi-square" (;
2). 

The degrees of freedom are equal to the number ofclasses less 2, 

i. e., 9 - 2 =1 7. From a Chi-square table of probability levels, it 
is foundthat the probabilitylevel is about .60 or 60 per cent. 

A .5 per cent level is usually taken as sufficient to indicate that 
there is reason to reject the hypothesis that the data can be 
represented by the curve. Therefore, the present level of about 
60 per cent is taken to be rather conclusiveevidence that the data 
may be represented by the Poisson Curve. 

V. 12. Test of Goodness of Fit of the Poisson Series to the Distribu­
tion of Spacings Between Vehicles. As already mentioned we are also 
interested in the distributionof the time or distance spacings be­
tween successive vehicles. It is these time-gaps on the opposite 
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Table V. 3


FITTING OF POISSON CURVE BY INDIVIDUAL TERms TABLE


TmE SpAciNG BETWEEN VEMCLES (CHi-sQUARE TEST)


Frequency Distrib;ii1on of Time Spacings Between Vehicles on a Two-Lane Highway (Routes

U.S. 50 and 240 in Maryland). Data Furnished by Public U.S. Roads Administration. 

1 2 

0-1 781285 
1-2 20 
2-3 94 
3-4 58 

4-5 24 

5-6 17 

6-7 23 

7-8 11 

8-9 18 

9-10 10 


10-11 8 
11-12 5 
12-13 7 
13-14 13 
14-15 8' 
15-16 8 
16-17 4 
17-18 3 
18-19 187 
19-20 5 
20-21 4 
21-22 0 

22&morei 54 

3 4 5 6 7 

4f 

4
' tx 

'0013601 5.891 17 127 11331.9 
.008979 .92 6'81 201 8 772M 
.029629 19.55 74 5476 273.8 
.065183 43-02 15 225 5.2 
.107553 70-98 47 3619 51.7 
.141969 93.70 77 5929 63.8 
.156166 103.07 so 6400 62.1 
.147243 97.18 86 7396 76.2 
.121475 80.17 80 6400 80.0 
.089082 58.79 49 2401 41.4 
.058794 38.80 31 961 25.3 
.035276 23.28 18 324 14.1 
.019402 12.81 6 36 3.0 
.009851 6.50 7 49 7.1 
.004643 3.06 5 
.002043 1.35 7 
.000843 .56 3 
.000327 .22 2 
.000120 .08 9 86 6724 1268.7 
.000042 'R .03 4 
.000014 .01 3 
.000004 .003 0 
.000001 .0006 53 

(Chi-square, X2 13304.3 

m = mean = 6.6 seconds 
Degrees of Freedom = 14 - 2 12 
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lane that are used in passing. We shall now check the goodness of 

fit of the time spacing distribution to the Poisson Curve. The data 

were taken on Route U.S. 240, Maryland, and were furnished by 

the PublicRoads Administration. The Chi-square testwill be used. 

Accordingto this methodas showninTableV.3., it is immediately 

evident that there is a wide discrepancy between the actual and 

the theoreticalfrequencies. The probabilitylevel is practicallyzero. 

If the distribution of time gaps between vehicles is not a Poisson 

series, what is it? To determine this, let us re-examine the nature 

of the Poisson series when applied to spacing distribution. 

The probabilityof the occurrence of a time or distance gap of a 
given length is the probability that no vehicle will appear in the 

given interval. 

For example, given a volume of 400 vehicles per hour, let it be 

required to determine the probability"Po" of a one second interval 

having no vehicle. The average number of vehicles per second "m" 

is equal to 4W/3100 ;:= 9' ; therefore, the probability of a one second 
interval having no vehicle is equal to 

lmo
 -1 
mo
 
e-m 
00 = e 
0! )9 


 e`g, since 1 
 I 
(MO)! 1 

The probability of no vehicle appearing in 2 seconds is e-5, and 

in 3 seconds e-9'. In general, the probability Po of there being no 

vehicles in "s" seconds is equal to e-m. This equation is of the 

general form of 
y = ex 

which may be written 

lo& Y = x 

therefore the equation when plotted on semilog-paper becomes a 

straight line. The exponent, -m, means that the slope of the line 

is negative. 
For plotting on semi-log paper we first arrange the data, as 

shown in the cumulative Table VA. where the percentages of 

spacings equal to or less than a given interval are tabulated. 
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Table VA 

FITTING OF POISSON CURVE 

EXPECTED ERROR METHOD 

Class interv Class Cumulated Expected Expectedal Cumulated error or 
in seconds frequency frequency per cent natural error sn 

(fo) uncertainty per cent 

0-9 78 78 10.8 8.28 1.26 
1-1.9 207 285 43.2 12.72 1.93 
2-2.9 94 379 57.4 12.72 1.93 
3-3.9 58 437 66.2 12.15 1.84 
4-4.9 24 461 69.8 11.79 1.79 
5-5.9 17 478 72.4 11.5 1.74 
6-6.9 23 501 75.9 10.9 1.65 
7-7.9 1 1 512 77.6 10.8 1.64 
8-9.9 18 530 80.3 10.2 1.55 

10-11.9 23 553 83.8 9.4 1.42 
12-13.9 20 573 86.8 8.7 1.32 
14-15.9 16 589 89.2 8.0 1.21 
16-17.9 7 596 90.3 7.5 1.14 
18-19.9 6 602 91.2 7.3 1.11 
20-21.9 4 606 91.8 7.0 1.06 
22-23.9 6 612 92.7 6.7 1.02 
24-25.9 6 618 93.6 6.21 .94 
26-30.9 10 628 95.1 5.47 .83 
31-35.9 11 639 96.8 4.52 .68 
36-40.9 8 647 98.0 3.89 .59 
41-45.9 6 653 98.9 2.56 .39 
46-50.9 1 654 99.1 2.56 .39 
51-55.9 4 658 99.7 1.40 .21 
56-60.9 0 668 99.7 1.40 .21 
61-70.9 1 659 99.8 1.15 .17 
71-80.9 1 660 100. 0 0 

Mean = 	 4346.0 6.585 
-R-0- 
 

These percentages are represented by the heavy dots which fall in 

an irregular line as shown in Fig. VA This is to be expected for 

unless a sampleis very large thereis always a "naturaluncertainty" 

or difference between the sample values and those of the universe. 
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A fair measure of this uncertainty is the standard deviation of a 
class or sample. The formula for this natural uncertainty is 

__fOI (I fo)_ n 

where n equals the total number of happenings recorded, and fo 
equals the accumulatedfrequency. Since n in the present case is 

n 
660,_ is so nearly equal to I that it may be omitted and the 

n-1 
equation becomes: 

Z 
= f 0 ln
O)) 

An examination of this formula shows that the uncertainty 
depends upon the size of the sample and not upon the size of the 
universe. It may seem a littleparadoxical that a 20 per cent sample 
may be no more representative of the universe than a 10 per cent 
sample. If, however, we recall that the size of the universe may be 
consideredto be infinite, and this is practicallytrue of traffic, then 
no sample is any nearer than any other to including all the uni­
verse. With this in mind it is entirely logical that the size of the 
universe does not appear in the formula for the measure of uncer­
tainty. 

If we could draw a line through the plotted points and stay 
within the natural uncertainty range we could conclude that the 
data could be represented by a straight line. But this is not the 
case as can be seen in Figure V.6., so it must be that the distribu­
tion of spacings is not the special case of the Poisson series which 
may be represented by the curve e--. 

It appears, however, that the data can be closely represented by 
two straight lines. This implies that there may be two distribu­
tions, one for spacings less than about 4 seconds and another for 
spacings of more than that and that each is "random" in the 
limited case. 

If we take the class intervals equal to 5 seconds in order to 
smooththe curve we obtain the points shown in Figure V.7. which 
is approximately a straight line. This indicates that if we are not 
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concerned with spacings of less than 5 seconds that the straight 
line represents the distribution of the spacings closely enough for 
approximate analysis. 

V. 13. Xinimum Spacing. For what is believed to be thefirst indi­
cationthat minimumspacingdistributionsmight be different from 
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those at greater distances, we refer to a study made in Ohio in 

1934.5 The cumulative frequency curve shown in Figure V.8. is 

plotted from data collected at that time. The spacings, center to 

center of vehicles, are in feet. 
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It is indicatedthat the minimum spacing distributionis random 

and that it extends from about 30 feet to 200 feet. Evidently 

there are few, if any, spacings below 30 feet, and beyond 200 feet 
there is another random distribution different from that below 

200 feet. This may be interpreted to mean that the distribution at 

less than 200 feet varies in accordance with the reaction-perception 
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time of the driver and his judgment of what constitutes a safe 

distance. Beyond 200 feet, the spacing may be judged to be in 

accordance with the chance placement of the vehicles on the high­

way. If the observed results are compared with the theoretical 

FiGURE V.9 

CUMULATivE FREQ7UENCY GURVE OF SPACINGS 13ETWEEN SUCCES­

SIVE VEHICLES FOR VARio-us TRAFFIC VOL-UMES ON A TYPwAL 

2-LANE RuRAL HIGHWAY 

curve, it is found that the deviations from the random distribution 

are accounted for by there being: 

(a) No spacings below 30 feet. 

(b) An excess of spacings between 30 and 200 feet. 

(c) A deficit of spacings in excess of 200 feet. 
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These discrepancies are logical, for the minimum spacing, center 
to center of vehicles, is limited by the length of the vehicles and 
because vehicles, closing up behind slower vehicles must wait for 
an opportunity to pass, create a preponderance ofthe smaller spac­
ings. 

If the spacing of about 200 feet is divided by the average speed 
of 34.1 miles per hour we obtain about 4 seconds as the limit of the 
zone of speeds reduced by the presence of other vehicles. These 
data from twolocations, would not be supposedto give a conclusive 
answer. 

For more extensive data, let us turn to Figure 9, page 40 of the 
Capacity Xanual. These data replotted as nearly as is possible 
from the printed curves are shown in Figure V.9. They are in time 
spacings and the breaks in the curves seem to come between five 
and six seconds. 

Theoretically, if the lines had no breaks there would be no inter­
ference, and if all vehicleswere restricted there would be no breaks. 
These conditions were found and reported in the earlier paper re­
ferred to. To find the average of the "influenced" spacings we first 
make the reasonable assumption from the graphs that practically 
no spacings are under/2 second or over 6 seconds, and draw a line 
between these points as in Figure V. IO. This line then represents a 
random distribution of "influenced" spacings. 

The next step is to let S 
 m, where m is the average spacing. 
Now the expression 

100 (
 -iii-) =100 (e 0.368 
 36.8% 

so that the average wouldbe at point36.8 per cent and wouldequal 
about 1.7 seconds. At this average "random" spacing all vehicles 
would be travelling at a restricted speed due to the closeness of 
spacing betweenvehicles. 

V. 14. The Xinimum Spacing qt Four-Lane Traffic: Traffic on a 
four-lane highway does not have the same spacingrestrictions as a 
two-lane roadway. Vehicles are free to weave into the adjoining 
lane. When the curves shown in Figure 10, page 41 of the Capacity 
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RANDom DISTRIBUTION OF "INFLUENCED" SPACINGS 

Manual are replotted as shown in Figure V.11., the resulting 
curves show no breaks. The distribution of timespacingsis evident­
ly random throughout. 

V. 15. Frequency Di8tribution of Speed8: Having determined the 
characteristics of the spacing distributions, the next step is that 
of determiningthe nature of the distributionof automobile speeds. 
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Table V. 5


CALCULATION OF STANDARD DEVIATION


OF DISTRIBUTION OF VEMCLE SPEEDS


2 3 4 5


Speed in Observed no. 

Miles per hour of speeds fo 


20
6 5 
25.4 

25.6 
30.4 7 

30.6 
35.4 1 9 

35.6 
40.4 23 

40.6 
45.4 1 3 

45.6 
50.4 1 5 

50.6 
55.4 12 

55.6 5
60.4 

60.6 
65.4 1 

Arithmetic Mean X 

Deviation in f, d fo d2 

class Intervals 

- 4 - 20 80 

- 3 - 21 63 

- 2 -38 76 

- I - 23 23 

0 0 0 

1 1 5 1 5 

2 24 48 

3 1 5 45 

4 4 1 6 

- 44 366 

40.8 miles per hour 

]/Zfo(d2) tZfd
p­
5 V 
N 

1/3f66_ -n44)2 
'In fj 

100 100 

5.0 V(3.66 -. 1936) 

5 r(3.4664) 

5 (1.862) = 9.31 

standard deviation 



Table V. 6. 
FiTTING OF NORMAL CuRvE To DiSTRIBUTION OF VEHICLE SPEEDS 0111-SQUARE METHOD 

1 2 3 4 5 6 7 8 9 10 1 1 

9r.
3 

4:
 

4
' 4
' 

EN Z, 

20.6 
25.4 23 5 - 20.2 - 2. 17 48.50 3.65 3.65 

25.6 - 1 12.29 -. 29 .084 .007 
30.4 28 7 - 15.2 - 1.63 44.85 8.64 8.64 

30.6 
35.4 33 19 - 10.2 - 1.09 36.21 14.98 14.98 4.02 16.160 1.079 

35.6 
40.4 38 23 - 5.2 -. 56 21.23 20.43 20.43 2.57 6.605 .323 

40.6 
45.4 43 13 

- 2 
+ 4.6 

-. 02 
+ .49 

.8 
18.75 19.55 19.55 -6.55 42.902 2.194 

45.6 
50.4 48 15 9.6 1.03 34.85 16.10 16.10 -1.1 1.21 .075 

50.6 
55.4 53 12 14.6 1.57 44.18 9.33 9.33 2.67 7.129 .764 

55.6 
60.4 58 5 19.6 2.11 48.26 4.08 4.08 

5.41 .59 .348 .064 
60.665.4 63 1 24.6 2.64 49.59 1.33 1.33 

Average Mean speed = 40.8 miles per hour X.2= 4.506 N7 classes 7 - 3 4 degrees of freedom cr S = 9.31 
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It 	has been found that this distribution closely follows the 

normal curve." Again as in the two previous examples of "ran­

dom" distribution, the usual method of makinga test of the good­

ness of fit is the Chi-Square (Z2) test. For the sake of simplicity, 

let us take a small sample of 100 recorded speeds. The area method 

of fitting a normal curve to the observed distributionwill be used. 

The area includedwithin any number of standard deviations may 

be obtained from prepared tables of areas of the normal curve. The 

calculation of the standard deviation is shown in Table V.5. 

The steps in the calculationare arranged as shown in Table V. 6., 
with the data in the respective columns consistingof the following: 

(1) 	 The speeds in class intervals of 5 miles per hour. 

(2) 	 The mid-points of the classes. 

(3) 	 The number of speeds recorded, i. e. the frequency fo. 

(4) 	 The deviations of the class limits from the arithmetic mean. 

(5) 	 The deviations from the mean in terms of standard devia­

tions. This column is obtained by dividing the numbers in 

column 4 by the standard deviation. 

(6) 	 Per cent of the area between the class limit and the mean. 

This is obtained from an area table of the normal distribu­

tion. 

(7) 	 Per cent of area in class interval. This is obtained by sub­

tracting successivelythe numbersin column 6. 

(8) 	 The theoretical frequency ft is obtained by multiplyingthe 

per cent of area in each class interval by the total number 

of speeds observed. This equals 100 in the present case. 

(9) 	 This column gives the difference between the observed fre­

quency fo (column 3) and the theoretical frequency ft 

(column 8). 

(10) This column is obtained by squaring the items in column 9. 

(I 1) The sum of the items in this column equals )
. This is the 

value we use with the Chi-square table. 

In using the chi-square table we need to know the degrees of 

freedom. In fitting a normal distribution three degrees of freedom 

are lost (or three constraints are imposed) because (1) the total 

frequency, (2) the arithmetic mean, and (3) the value of the 
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standard deviation are used in computing the normal frequencies. 
The possible number of degrees of freedom is equal to the number 
of class intervals, 7 in this case. Therefore, 7 - 3 = 4, the degrees 
of freedom in the given example. 

We find from the Chi-square table that the probability level is 
more than 5 per cent which means that in more than 5 times out 
of 100 the sample could have comefrom the universe tested. This 
level of 5 per cent is taken to mean that there is not sufficientevi­
dence to reject the hypothesisthat the data can be representedby 
a normal curve. In the present case the probability is more than 
.30 which means that a variation as great as the amount found 
might occur in 30 cases out of 100 due to chance. Therefore it is 
not to be considered as significant. 

V. 16. A Graphical Method of Determining Goodne88 of Fit. Another 
means of determining whether the distributionis normal or not is 
to plot the percentage of speeds at or less than various speeds on 
arithmetic probability paper. If the distribution is "normal" the 
observeddata will be represented by a straightline. In such a case, 
due to symmetrythe speedgiven bythe intersectionof the straight 
line with the 50 per cent ordinateis the most frequent and average 
speed, as well as the median. The usual definitions become: 

Mean Average Speed 
 arithmetical mean of all speeds - also 
called probable or expected speed. 

Median Speed= speed such that 50 per cent of the speeds are 
greater, and 50 per cent less. 

Modal Speed 
 the most frequently occurring speed. 
The datautilized are the numbers of cars withspeeds equal to or 

less thana given series of equallyspacedvalues. The same data will 
be used as in the first illustration. It is shown in Table V.7. 

The points listed in Table V.7. are plotted in Figure V.12. It 
will be seen that they fall in rather irregular fashion, and that at 
first glance- the position of the 63.5 mile per hour point appears to 
preclude the possibilityof drawing a satisfactorystraight line. 
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Table V.7


Speed in Miles Cumulated Percent Equal Natural


Per Hour Frequency to or Slower Uncertainty

in Percent


20.5 0 0 0.0 

25.5 5 5 2.18 

30.5 12 12 3.24 

35.5 31 31 4.62 

40.5 54 54 4.97 

45.5 67 67 4.70 

50.5 82 82 3.84 

55.5 94 94 2.37 

60.5 99 99 0.99 

63.5 100 100 0.0 

65.5 100 I 100 0.0 
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First, however, it is importantto considerthe probable amounts 
of the "natural uncertainty". Recall that the natural uncertainty 

f 
Z +41 -_O . This natural uncertainty is given for each fre­

n) 
quency in the last column of the table. 

If the percentage of cars travelling slower than a given speed 
or equal to it is plotted against speed, the points will fall in an 
irregularline. This is to be expected, particularly when the number 
of cars represented in one diagramis only 100. If counts are made 
a number of times under precisely the same conditions of traffic, 
the percentage traveling faster than, say 40 miles per hour, will 
never be exactly the same, except by chance. There will be a 
certain dispersion around the average value for several groups of 
100 cars. This we have already referred to in article V.12. as a 
Ccnatural uncertainty". 

Through eachplotted point, a horizontalline is drawn represent­
ing the allowed ± range in the value of fo. It is then permissible 
to draw a smoothed curve in such a way that it passes through all 
the horizontal lines, attempting to draw it so that the sum of the 
deviations from the actually counted values shall be equal. 

In the present case, a straight line satisfies all but the 63.5 mile 
per hour point. In the preceeding formula, fo should really be the 
mean number of cars with velocity equal to or less than the given 
amount, found from a great number of sets of 100 cars under the 
same traffic conditions. In such cases, it is fair to suppose that an 
occasional car traveling faster than 63.5 miles per hour would be 
found. Then the actual percentage slower than 63.5 would be 
slightly less than 100. If, for example, it were 99.5, the natural un­
certainty would then be ± 0.7, and the point and the dotted line 
would give the result. In this case, it is evident that the straight 
line can be passed through all the horizontal lines. This means 
principally, that the points given by the higher speeds are too 
erratic and sensitive to accidental fluctuations to be given much 
weight in drawing of the curve. Probably all points for percentages 
less than 2 and greater than 98 should be ignored in drawing the 
curve. 
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That the "normal" dispersion.pattern describes the speed range 

is demonstrated if we replot some of the speed curves shown in 

Figure 5 of the Capacity Manual. These curves plotted on arith­

metic probability paper are very nearly straight lines as shown in 

Figure V.13., where the distributions for traffic volumes of 600, 

1200, and 1800 vehicles per hour are given. 
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HIGHWAYS


Judging from these examplesit may be assumed that a straight 

line will satisfy the data and that the "smoothed" values read 

from the curve may be used in analysis. 

V. 17. Estimating Speeds and Volumes. Having determinedthe freo 

speed distribution on a highway, it is possible to estimate the 

speed at greater traffic volumes. 
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The first step is to find the average difference in speed between 
the vehicles being passed and the passing vehicles. The rate at 
which the faster vehicles are overtaking the slower ones can be 
found from a speed distributioncurve.(') Such a curve is shown in 
Figure V. 14. as replotted from Figure 4, page 30, of the Capacity 

FIGURE V. 14


FREQUENCY DISTRIBUTION OF TRAVEL SPEEDS OF FREE MOVING

VEHICLES oiT LEVEL, TANGENT SECTIONS OF THE MAJORITY OF


EXISTING 2-LA-,NTE MAIN RURAL HIGHWAYS


Manual. It is evident that there are just as many vehicles travel­
ing above the average (or 50 percentile speed) as below it. The 
average speed differential is the difference between the average 
speed of the 50 per cent faster vehicles and the 50 per cent slower 
vehicles. The average of the 50 per cent faster vehicles comes at the 
78.75 percentile, and the average of the 50 per cent slower vehicles 
comes at the 21.25 percentile.(') 

(a) In a study of passing made in 19356, it was found that vehicles in 
the act of passing other slower vehicles were traveling 9 to 10 miles per 
I- ur faster. The Capacity Alanual gives 9.6 miles as the average passing 
speed differential. (Footnote continuedon p. 183). 

(b) This can be proved as follows: Let Figure V. 15 represent the same 
curve as Figure V. 14., but plotted on linear cross section paper. 



183 APPLICATIONS OF STATISTICAL METHODS 

The average speed of the faster vehicles equals 47.5 miles per 

hour and the average for the slower ones is 37.5 miles per hour, so 

that the average difference is 10 miles per hour. 

Y 

X&

Y=,,lTri7 e-WV 

YX


dx 

FIGURE V. 15 

DETERMINATION OF THE MEAN ABSCISSA OF THE UPPER HALF OF 
THE NORmAL DISTRIBUTION CURVE AND THE AREA TO THE RIGHT 

OF THIS ABSCISSA 

Required: To find (1) the mean abscissa of the upper half of the normal 
distribution curve, and (2) the area to the right of this abscissa. 

X'y dx = 2fo"o xy dx 

2 foo - x2 
- xe -2--- dxf2 --­

Y
2- cr, which is about = .798 a. 
77 

From a table of areas under the normal curve, the area to the right of 
.798 a is .2125, or 21.25 per cent of the total area. In other words, 21.25% 
of the speeds will exceed the average of all the speeds higher than the 
average speed. Similarly, because of symmetry, 21.25% of the speeds less 
than the average will be less than the average of all the speeds lower than 
the average speed. 
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Having found the average speed differential we next find the 
percentage of spaces either large enough or too small to permit 
passing. 

Assume for example that a two lane road is carrying800 vehicles 
per hour and that the distribution of time spaces is random with 

3600 
the average spacing m = - = 9 seconds, (since there are 

400 

400 vehicles passing a point every hour in one direction or every 

100 

so 

40 Perc nt less than 10 seconds= 67
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FIGURE V. 16

CumuLkmvE DISTRIBUTION OF TimE SpAcEs ASSUMED FOR


2-LANE ROAD CARRYING 800 VEHICLES PER HOUR




APPLICATIONS OF STATISTICAL METHODS 185 

3600 seconds) and that the minimum spacing is 1/2 second. The 

curve for the distributionis shown in Figure V.16. 

WithlOsecondsastheaveragetimerequiredforpassingwefind 
from curve V. 16. that 67 per cent of the spaces are too small for 

passing. This means that 67 per cent of the time a driver on this 

highway could not pass because of vehicles on the opposite lane. 

This concept becomes clear if we keep in mind that at any 

instant the chance of there being a space of less than 10 seconds 

of free space on the oppositelane is equal to the percentage of the 
total spaces that are less than 10 seconds. In this sense the size of 

the time-gap has nothing to do with the chance of its being oppo­

site the driver at any particular instant. It is only the frequency of 

the occurrence of the space that determines the probability of its 

happening in so far as passing is concerned. This reasoning be­
comes clearer if we remember that a space even if large is usually 

used for onlyone passing. For example 6 time spaces might occupy 

50 seconds with one equal to 10 seconds to permit one passing or 

one of the spaces might be 25 seconds and still permit only one 

passing during the 50 seconds. (See Article V.23 for mathematical 

solution.) 
If a driver is not to be retarded,he mustevery time he approaches 

a vehicle ahead, immediately pass the leading vehicle. If his speed 

is on the average IO miles an hour faster, then that per cent of the 

time he cannot pass is the per cent of the 10 miles per hour differ­

ence that he mustlose. In the presentinstance he would lose 67 per 

cent of 10 miles per hour or 6.7 miles per hour. Subtracting this 

fromthe 43 miles per hour average speed gives 36.3 miles per hour 

as the estimated average speed if the volume is 800 vehicles per 

hour for two lanes. This very -nearly equals the observed speed of 

36 miles per hour as shown in the lower curve, Figure 5, page 31, 

of the CapacityManual. This resultwouldindicate thatthis method 

of estimating is accurate enough to give good design figures. As a 

further check let us estimate the speed for 1200 vehicles per hour 

for two lanes. From the curve shown in Figure V. 17. we find that 

vehicles are prevented from passing for 83 per cent of the time. 

The speed drop is thus 83 per cent of 10 miles per hour = 8.3 

miles per hour. Subtracting this from 43 = 34.7. This is more than 
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the observed results of about 32 miles per hour shown in Figure 5, 
page 31, of the Manual. 

This lack of agreement needs to be examined to see if there is an 
explanation. According to the theoryjust advancedthe speed drop 
dueto inabilityto pass cannotexceedthe average speed differential. 
How can we account for a speed drop greater than this ? The logical 
conclusionis that a further speed drop is not dueto an inability to 
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pass but to some other cause. If we recall that there is a speed drop 

directly proportional to spacing the reason for the further speed 

loss becomes clear. With a volume of 1200 vehicles per hour, a 

high percentage of vehicles are traveling in the six second zone of 

mutual interference and are slowed because they are too close to­

gether rather than because of an inabilityto pass. 

V. 1S. Estimate of Size Gap Required for Weaving. It is impossibleto 

estimate the speed drop for a given increase in volume on a four-

lane road without knowingthe time-gap requiredfor weaving. But 

since the speed drop has been measured, it is possible, by reversing 

the method just explained, to estimate the time-gap for weaving. 

From Figure 46, page 122, of the Capacity Manual, we find that 

at 1700 vehicles per hour, the distributionbetween lanes is equal. 

The speed on both lanes at thispointshould be the same. Referring 

to Figure 7, page 33, ofthe CapacityManual, the speed at a flow of 

1700 vehicles per hour is about 41 miles per hour. This is a drop of 7 
miles per hour. Since the average speed differentialis 8.8 miles per 

hour, in order fora speeddecrease of 7 miles per hour to take place, 

7 
ontheaverageeacheardriverwouldberetarded-79.5percent

8.8 

of the time. This means that 79.5 per cent of the spaces on the 

adjoining lane are too small to peimit weaving. From Figure 10, 

page 41, of the CapacityManual, we find that the intersectionof 

the 1700 vehicles per hour abscissa and the 79.5 per cent ordinate 

gives 3 seconds as about the time-gap required for weaving. This 

time-gap compares very closely indeed with the average weaving 

gap of 3 seconds as found by Wynn and Gourlay". 

V. 19. PhysicalFeatures of Highway: Effect on Traffic Flow. Having 

discussedthe interrelationships of the characteristics of flow, un­

interrupted except by other traffic, the next step is to find what 

happens if the flow is slowed or interruptedby physical features of 

the highway. Let us first direct our attention to a location where 

passing is prohibited. This occurs in mountainous or hilly country 

where grades or restricted sight distances prevent passing. 

For this problem assume that the average speed differential is 
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9 miles per hour and that it is required to estimate the time loss 

due to a stretch of highway where passing cannot take place for 

one half of the time. Let us further assume that the volume 

is 600 vehicles per hour. Reasoning as before, that a driver in order 

not to lose speed must be able to pass as soon as he approaches 

behind a slower vehicle, we conclude that for one half of the time 

he must sacrifice the speed differential between his own speedand 

that of the slower vehicle. Thus if the average speeddifferential is 

9 miles per hour the speed loss in this case would be 
 X 9 = 4.5 

miles per hour. To this loss must be added the loss due to an ina­

bility to pass because of vehicles on the opposite lane. Proceding 

as before, for a volume of 600 vehicles per hour we find 17 per 

cent of the spaces are greater than the 10 seconds required for 

passing. This means that for 83 per cent of the time that there 

is sufficient sight distance to pass, the passing maneuver is pre­

vented by traffic on the opposite lane. The additional speed loss 

is 0.83 X 4.5 
 3.75. Therefore, the total speed loss is equal to 

4.5 + 3.75 = 8.25 miles per hour. 

V. 20. Crossing Streams of Traffic. The capacity of a highway or 

street is limited bv delavs at intersections. The basic condition, but 
not the simplestto analyze, may be thoughtof as the intersectingof 

2 two-lane roads without any traffic contr017. Each vehicle under 

such a condition crosses during a gap in the opposing stream of 

vehicles. The average minimum acceptable time gap has been 

measured and found to range from 4.6 to 6 seconds depending 

upon the type of intersection with the average being 4.8 seconds". 

Mr. Raff calls this "minimum acceptable time-gap" a critical lag 

and correctly defines it as the size lag which has the propertythat 

the number of accepted lags shorter than L, the critical lag, is the 

same as the numberof rejected lags longer than L. In other words, 

the acceptable time gap is just as likely to be accepted as it is to 

be rejected. The probability that it will be accepted is thus equal 

to 1. 

The chances of any single vehicle being delayed at an inter­

section can be deduced in the same manner as the delay in passing 

by saying that the chance of crossing depends upon the probability 
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of there being a time-gap of sufficient size at the instant the ve­

hicle approaches the crossing. This probability depends upon the 

relative frequency of gaps and not upon their size. Thus if 75 per 

cent of the gaps are as large or larger than required for crossing, 

then the chance of being able to cross without delay is 75 per cent, 

andthe chance of being delayedis 25 per cent. With this reasoning, 

and recalling the exponentiallaw of distributionof time-gaps, the 

probabilityof being delayed would be 

(I - e-) 
 (I - e-) X 100 in per cent 

The probabilityof not being delayedwould equal 

e-m 
 (e-) X 100 in per cent 

where m is the average size of time-gap on the street being crossed. 

This reasoning applies to single or "first-in-line" vehiclesfor a 

next-in-line vehicle has to wait for the first vehicle to clear and 

hence is delayed a longer time, or looking at it in a different way, 

has a greater chance of being delayed. This questionof added delay 

will be considered later in Art. V.25. For an illustration let the 

traffic on the main highway be 400 vehicles per hour. The fact 

that it is moving in two directions is immaterial. For our purpose 

it may be considered to all be in one direction. The average spacing 

3600 
between vehicles on the main highway will be = 9 seconds. 

400 

Since there are practically no spacings below I./, second the dis­

tribution of spacings will be approximately that shown in Figure 

V.16. Recall that the average is at point .368 on the per cent or­

dinate. This curve shows that 52 per cent ofthe spaces are greater 
than 6 seconds and 48 per cent smaller. 

V. 21. Mathematical Determination of Vehicle Delay Time. The 

problem of determiningthe proportionof time that a vehicle is de­

layed may be approached by a more rigorous mathematical ana­

lysis. This problem along with other related problems has been 

solved by Mr. W. F. Adams in examples worked out in connection 

with his paper, "Road Traffic Considered as a Random Series."12 
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The proportion of time occupied by intervals greater than t 

seconds, according to Mr. Adams, is 

e-Nt (Nt + 1) V.21.1. 

wherein W equals vehicles per second. The proof is as follows: 

Consider the intervals of lengths lying between t and t + dt, and 

for the moment assume we are dealing with a period of one hour. 

In one hour the expected number of intervals greater than t is, 

Te-Nt 

T vehiclesper hour. This is basicallythe same as the formula, 

100 e but with different notation. 

Similarly, the expected number of intervals greater than t + dt 

is 
Te-N (t + dt) 
 Te- (Nt + Ndt) 

Te-Nt e-N" by the rule for addition of indices. 

The number of intervals of lengths between t and t + dt is 

= Te- Nt_ Te- Nte- Ndt = Te-Nt( I - e- Ndt) 

Expanding e- NIt in terms of Ndt, 

= Te-Nt (1 - 1 + Ndt - N2dt2/2! + N3dt3/3! .... 


 Te- NtNdt. Omitting terms in dt2 and higher powers, 

= TJ\Te-Ntdt 

To the first order of small quantities, the length of all such 

inter-
als may be taken as t. 

The time occupied by these intervals is therefore 

TNte-Ntdt seconds 

The time occupied by all intervals greater than t during one 

hour is found by integrating this expression between limits t and 

infinity, 

te- Ntdt


TNft 



Integrating by parts, fudv = uv - fvdu


Put u 
 t, du=. dt, and dv = e-Ntdt so that 

v P-- fe -N'dt = - e-Nt/N 
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The above expression then becomes 

TN [_ te-Nt/N + 'e-Ntdt/N]t =TN [_ tC MIN - e-Nt/N2] t 

Both terms are zero when t is infinite, so that the number of 
seconds occupied by intervals over t seconds during one hour be­
comes 

TN (te-Nt/N + e-Nt/N2) 3600 N2 (te-Nt/N + e-Nt/N2) 
3600 CM(Nt + 1) 

Now the total time considered is 3600 seconds, so that the pro­
portion of time occupied by intervals over t seconds is 

e-Nt(Nt + 1) 

Conversely, the proportion of time occupied by intervals less 
than t is 

I - cNt (Nt + 1) V.21.2. 

V. 22. Graphical Method of Determining Proportion o Time Occu­
pied by Time-Gap8 of Given Size. The time occupied by time-gaps 
larger (or smaller-) than any givenvalue may be determined graphi­
cally. This is possible because we know that the average size gap 
in any range is always at .368 or the 36.8 percentile point of the 
range. 

For the purpose of demonstration let it be required to find the 
proportion of time occupied by time-gaps larger than 6 seconds in 
a stream of traffic of 600 vehicles per hour. The average space is 

3600
equal to - 6 seconds. This average is at the 36.8 percentile

600 S 
point so we may construct the curve 100 e '
i which we have 

already discussedby selecting several values for S to get values for


S (m 
 6) to give points on the curve. The curve is shown in

In

Fioure V.20.


The average spacing is 6 seconds at 36.8 percentile point. The 
average for the spacings greater than 6 seconds is at the point 36.8 
per centof 36.8 per cent or 13.5 per cent. The correspondingspacing 
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CUMULATivE DISTRIBUTION OF TIME SPACES ASSUMED FOR


2-LANE ROAD CARRYING 600 VEHICLES PER HouR


is 12 seconds. Thus, the average of all spacings is 6 seconds and 

the average for the spacings above 6 seconds is 12 seconds. There­

fore, the proportion of time occupied by spacings greater than 
6 seconds is equal to 

36.8 	(per cent) X 12 = .736 
100 (per cent) X 6 

73.6 per cent 
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Using the formula e't (Nt + 1); N = 1, t = 6:
6 

e-N1 (Nt + 1) = e-1 (1 + 1) =.368 X 2 


 .736 = 73.6% 

V. 23. The Average Length of All Interval8. The average length of 
all intervals greaterthant secondsis equalto the total time greater 
than t seconds divided by the number of intervals greater than t 
seconds, i. e., 

e-Nt 	(Nt + 1) (1 
N CM N + t) seconds V.23.1. 

Conversely, the average length of interval less than t seconds is 
equal to the total time occupied by intervals less than t seconds 
divided by the number of intervals of less than t seconds, i. e., 

1 - eNI (Nt + 1) 

N (1 -e-Nt) 

I -Nt e-Nt_ e- Nt 

N (I _ CM) 

I -	 e- Nt Nte-Nt 

N (1 -e -Nt ) N(I-e - Nt) 

1 te-Nt 
V.23.2.

N I-e-"t 

Having determined the average length of intervals of less than 
t seconds it still remains to be found how much delay these inter­
vals cause. The following solution is given by Aft. Adams: 
Solution: 

When any pedestrian or driver arrives, he may find 

(a) 	 that no vehicle arrives during the next t seconds. The prob­
ability of this is e-Nt and in this case his waiting time is zero. 

(b) 	 that a vehicle arrives during the first t seconds, but none 
arrives in the t seconds following the arrival of the first 
vehicle. The probability of this is (I - e-Nt ) e- Ntand the 
waiting time is one interval. 
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(c) 	that the first two intervalsafter his arrival are each less than 

t seconds, but the third is greater than t. The probability is 
(I - e- Y)2 CY' and he has to wait for two intervals each 

less than t seconds. 

In similar manner it may be shown that the probability of any 

driver or pedestrian having to wait for n intervals each less than t 
seconds is 

(I - e-Nt)ne`t 

The Expectation(a) of intervalsfor whichthe driver or pedestrian 

has to wait is given by the series 

oe-Ift + I (I - e-Nt) e-Nt + 2 (I - e-Nt)2 e-Nt... 

e7Nt I 1 (1 - C"') + 2 (I - e-Nt)2 + 3 (I - e-Nt)3. 

Summingthe seriesin brackets to infinity(')the expected number 

of intervals becomes 

C Nt (1 - CM) 

(e-Nt)2 

e-Nt 	 V.23.3. 

The average length of the intervals of less than t seconds as al­

ready found is 
+
-Nt 

N ez Nt seconds. 

The average waiting time will be the product of the expected 

number of intervals and the average length of interval 

1 - e-5t te-Nt(I - e- N) 

Ne-Nt e-Nt(i - e- Nt) 

I l 
t 	 V.23.4. 

N 

This istheaveragedelaytoall driversorpedestrians,whethereach 

one is delayed or not. However, a proportione- Nt of them findthat 

the firstvehicle does not arrive duringthe t secondsfollowingtheir 

own arrival, so that this proportion of them is not delayed at all. 

(a) The 'Expectation' of an event which may at each trial take any one 

of a number of possible values is found by multiplying each of the possible 
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The proportion delayed is therefore

(I - e-Nt)


and the average waiting time of those who suffer delay is 

I/Ne-Nt - IIN - t

1 e-Nt


- e-Nt) t 

Ke Nt - e-N') e-Nt) 

t 
e-.Nt V.23.6. 

Mr. Warren S. Quimby13 using the formula in a modified form, 
gives the delay as 

Delay = 3600 t V.23.7. 
Vt Vt 

ve 600 e oo 

wherein t = acceptable time gap in seconds 
v = number of vehicles per lane per hour 
e = base of Napierian logarithms = 2.71828. 

3600 F--- number of seconds in one hour. 

These delays are for a single vehicle approachingthe intersections. 
?&. Quimby gives a comparison of the theoretical delay with the 
observed delay in the following table: 

values by the probability of its occurrence and summing the resultant 
products. It represents the average value to be expected from a large 
number of trials (Cf. Footnote b.) 

(b) Put (I - e- Nt) = a and note that a, being a probability,must be less 
than 1. 

The series then becomes

a + 2a2 + 3 &3 -4- 4 a4 -I- nan +


The sum to infinity of this series (see Hall and Knight's "Higher Algebra" 
Chap. V., section 60, example 1) is 

a/(I -a)2 = (I - e-Nt)/(e7-Nt)2 
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Table V. 8


COMPARISON OF THEORETICAL AND FIELD DELAYS

TO FIRST VEHICLE IN LINE


Sample A B C D E F 

Theoretical delay, seconds 6.60 7.10 6.91 6.95 7.04 4.05 

Actual delay, seconds 6.4 6.2 6.8 8.0 8.7 4.4 

For determiningthe percentage of vehicles delayed, Mr. Quimby 
gives the following formula: 

Per cent delayed -- 1 - e- 't/3600 + e- Vt/3600) T, 

wherein the terms are as already defined with the exception of T 

which is the probability of a vehicle arriving in any given time 

interval. 
Mr. Quimby states that this formula includes a consideration 

of both main and side street volumes and this is affected by a 

change in the volume on either street. 

The following table compares the actual with the theoretical 

delay: 

Table V.9 

COMPARISON OF THEORETICAL AND FIELD OBSERVATIONS 
OF TOTAL TRAFFIC DELAYED 

Sample A B C D E F 

Main street volume 568 635 606 608 627 200 

Side street volume 110 115 116 123 191 181 

Per cent delayed - theory 55.3 60.7 58.7 59.3 65.9 16.0 

Per cent delayed - actual 53.8 55.0 56.5 59.2 63.0 14.6 

.Another researcher to use a rational approach to this same 

problem is Mr. Morton S. Raff".. 

All cats are not "first-in-line" for often several vehicles are 
blocked so that there is a second, a third and so on, position car. 

He states that the percentage of vehicles delayed as given by the 

formula 
P 
 100 (1 - e-NL) 
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is too small. This formula will again be recognizedas the same one 

as just discussedbut with a different notation. That is N-L 
 Nt. 

In this formula N ;-- number of vehicles on main street and L 
 

the "lag." In order to take account of this sluggishness, Mr. Raff 

modifies the formula and arrives at the following: 
e- 2.5 Ns e-2 NL 

P 	 
 100 1 - -f-- 2.5 N -NL)
I e s (1 - e 

where 

P 
 Percentage of side cars delayed 

N = Main Street volume, in cars per second 

N,, = Side-street volume, in cars per second 

L 
 Critical lag in seconds 

e = Base of natural logarithm 

Mr. Raff states an examination shows that: 
1. 	 The limit of P, as N. approaches zero, is 100 (I - e-NL), 

which is the theoretical formula. In other words, if there are 

no side-street cars, there is no sluggishness effect. 

2. 	 P always exceeds 100 (I - e-NL) , except when N,, equals 

zero. In other words, the sluggishness effect delays more cars 

than would be delayed if it did not exist. 

3. 	 P is always less than 100 per cent, for any finite volume. 

4. 	 The partial derivatives of P with respect to N-, N, and L are 

all positive. This means that an increase in either of the two 

volumes or the critical lag causes an increase in the percent­

age of cars delayed, as given by this formula.-' 

The coefficient of N. has been found from observed delays to give 

values close to actual experimental results. For the theoretical 

development of the formula see Mr. Raff's book. 

V. 24. The Signalized Intersection. The signalized intersectionpre­
sents a problem that is different from that where there is no con­

trol or only a stop sign. The periods for crossing are at fixed inter­

vals rather than at random as are the openings in an opposing 

,stream of traffic. Since traffic is naturally distributed hapba­

zardly, it follows that anyfixed time signal causes unnecessaryde-

Jay. The minimum delay follows the shortest timing interval that 
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will permit all the waiting vehicles to clear. This factis easily com­

prehended if we think of a very long timing such as a 30 minute 

Ted followed by a 30 minute green signal. During the 30 minute 

green interval on one street there would be no delay but on the 

other street all traffic appearingat the intersectionduring the long 

interval would be blocked. The average wait would thus be about 

15 minutes. Obviously, as the timing is decreased, the average 

waiting time decreases until such time as the traffic fails to clear 
during each signal change. 

The two fundamental problemsin signal control therefore are (1) 

finding the shortesttiming that will not cause excessive failures to 

clear the waiting traffic and (2) determining the delay caused by 

the fixed timing. 
Perhaps the method of determiningthe chances of signalfailures 

to clear traffic may most easily be explained by means of an illus­

trative solution.' 

Let it be required to find the probabilityof the cycle failure for 

395 vehicles per hour on each lane with a 20 second green and a 

20 second red signal cycle. Since observations have shown that 
usually slightly more than 20 seconds are required after the light 

changes to green for seven vehicles to enter the intersection, it 
will be assumed that the cycle will fail whenever seven or more 

vehicles appear in 40 seconds. 40 X 395 
The average number of vehicles appearing in 40 sec. 
 

 

3600 

4 -4 = m. With this value of m, the probabilityof seven or more 

vehicles appearing in 40 sec. (found from table) equals 15.63 per 

cent. Therefore, the traffic signal will fail to clear the waiting 

traffic 15.63 per cent of the time. 

If it is desired to reduce the per cent of failures to say 5 per 

cent, it is only necessary to try a longer cycle. Two or three trials 

will usually give a result sufficiently close. The method is one of 

cut and try. 
(a) This treatment of the signalized intersection is abstracted from: 

"Application of Statistical Sampling Methods to Traffic Performance 
at Urban Intersections" by Bruce D. Greenshields, (Proceedings of the 
Twenty-Sixth Annual Meeting), The Highway Research Board, December, 
1946, pp. 377-389. 
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For a second trial, let us try a 25 second green - 25 second red 
cycle. The average number of vehicles appearing during the cycle 

50 X 395 
of 50 seconds is - 5.5 m. Since 10 vehicles will cause a 

3600 
failure, the percentage of the time that 10 or more will appear is 
read from the Poisson Table as .0537 or 5.3 7 per cent. 

This is nearly the desired answer and serves to illustratethe pro­
cedure. If a more accurate result is wanted, another trial could be 
made. 

Any signal failure will affect the chances of a succeeding failure 
since there will be vehicles left over from the first cycle. In the 
present example with a 20-20 signal, the second signal win fail if: 

1. 	 Seven vehicles arrive during the first and six or more during 
the second cycle. 

2. 	Eight vehicles arrive during the first and five or more during 
the second cycle. 

3. 	 Nine vehicles arrive during the first and four or more during 
the second cycle. 

4. 	 Ten vehicles arrive during the first and three or more during 
the second cycle. 

5. 	 Eleven vehicles arrive during the first and two or more during 
the second cycle. 

6. 	 Twelve vehicles arrive during the first and one or more 
during the second cycle. 

If the probabilities of the arrivals of the vehicles, as found in the 
Poisson tables, are multipliedtogether and added to give the total 
probability, the result is as follows: 

I ..	 0778 X .2800 = .02178 
2. 	 .0428 X .4488 
 .01921 
3. 	 .0209 X .6405 
 .01338 
4. 	 .0092 X .8149 
 .00750 
5. 	 .0037 X .9337 
 .00345 
6. 	 .0013 X .9877 
 .00128 

.06660 
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This means that two signals will fail in succession 6.66 per cent 

of the time. In order to have three successive failures, there would 

need to be: 

Thirteen vehicles in the first two cycles and six or more in the 

third, 
Fourteen -vehicles in the first two cycles and five or more in 

the third, 
Fifteen vehicles in the first two cycles and four or more in the 

third, etc. 

with the added condition that there be seven or more in the first 

cycle. While it is possible as just shownto computethe probabilities 
for these, it is cumbrous. Therefore a much less tedious method 

that gives results that agree closely with the more exact procedure 

will now be described. 

In the example just given the two cycles wouldfail in succession 

if 13 or more vehicles appeared during the two cycles, provided 

that seven or more appearedin the first cycle. 

The average number appearing in two cycles (80 secs.) equals 

80 X 395 


 
 8.8 = M 

3600 

The probability of 13 or more appearing in the two cycles is 

.1 102 as found in the Poisson tables (4 places is considered suffi­

cient). 
The average flow for the two failing cycles is not eight, the 

average flow on the roadway, but "13 or more vehicles". If it were 

known just how many vehicles "13 or more" amounts to it would 

be possible with this value of m to determine the probability of 

seven or more vehicles appearing in the first cycle. The next step 

is to find the mean value of "13 or more". Finding the arith­

metical average requires extensive multiplication, but the mean 

value can be found very quickly. From the Poisson table it is 

found that the probabilityof: 

13 or more vehicles appearing equals 0. 1102 

14 or more vehicles appealing equals .0642 

15 or more vehicles appearing equals .0353 

16 or more vehicles appearing equals .0184 
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17 or more vehicles appearing equals .0091 

18 or more vehicles appearing equals .0043 

19 or more vehicles appearing equals .0019 

20 or more vehicles appearing equals .0008 

The mean of .1102 'the probability of 13 or more vehicles 

appearing) is .0551. According to the Poisson table above the 

number of vehicles correspondingto .0550 falls between 14 and 15. 

The values from the table above are plotted on semi-log paper. 

0.2 
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0.05 ........... Mean 0.0551,


0.04 ­

0.03 E 
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Number of Vehicles Appearing During Cycle 

FIGURE V.21.


PROBABILITIEs AcCORDING TO POISSON DisTRiBUTION OF VARIOUS


NUMBERS OF VEMCLEs APPEARING AT AN INTERSECTION DURING


ONE SIGNAL CYCLE


-Note that the points fall on a nearly straight line. This fact makes 

it possible to interpolate between 14 and 15. The number of ve­

hicles shown on the abscissa corresponding to 0.0551 is equal to 

approximately 14.3 which is the mean of " 13 or more" for the two 

cycles or approximately 7.15 for one cycle. With this new m the 

probability of seven or more vehicles appearing in the first cycle 

is equal to 0.5939. 
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The probability of the two cycles failing is equal to the probab­
ility of there being 13 or more in the two cycles multiplied by the 
probabilityof there being seven or more in the first cycle or 0. 1102 
X .5939 = 0.0654. This may be compared with the correct value 
of .0666. 

The probability of three cycles failing in succession would be 
equal to the probabilityof 19 or more vehicles appearing in three 
cycles times the probability of 13 or more in two cycles (with m 
equal to 1,I), times the probabilityof seven or morein the first cycle. 

V. 25. CalculatingDelay at Signalized Intersections. It is possible to 
calculate the delay at a signalized intersectionby first finding the 
probability of retarding 1, 2, 3 .... n vehicles, and then computing 
the average delay for the first, second, third, etc. vehicles in line. 
The theoretical method of doing this is explained in "Traffic Per­
formance at Urban Street Intersections", 7 pages 91-94, but the 
procedure is too tedious to be practical. A method that is prac­
tical is describedin this same reference pages 95-97, and 100. 

V. 26. PracticalMethod for Determining Number of Vehicles Retarded 
at the Signalized Intersection: Before determining the delay per 
light cycle, it is necessary to ascertain the number of vehicles re­
tarded. The proportion of vehicles retarded is greater than the 
proportion of the red signal to the entire cycle, since each re­
tarded vehicle in effect increases the blocking period. The exact 
extent to which this occurs has been measured. 

For the first vehicle to arrive at the intersection the potential 
blocking period is equal to the red interval R of the signal, though 
it may not experience the full potential if it arrives after the be­
ginning of the red interval. The second vehicle, if it is not stopped, 
may not follow closer on the average than 1.7 seconds behind the 
first vehicle which enters 3.8 seconds after the light changes to 
green. The blocking periodfor the second vehicle thereforeis 

R + 3.8 + 1.7 = R + 5.5 seconds. 
The second vehicle enters 3.1 seconds after the first, so that the 

potentialblocking periodfor the third vehicle becomes 
R + 3.8 + 3.1 + 1.7 ;== R + 8.6 seconds. 
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Similarly the potential blocking period for the fourth vehicle 

equals R + 3.8 + 3.1 + 2.7 + 1.7
. R + 11.3 seconds 

In general, the potential blocking period is obtained by adding 

to the signal interval the additional delay interval caused by the 

precedingvehicles plus 1.7 seconds. 

The additional blocking periods created when various numberof 

vehicles are retarded is shown in Figure V.22 taken from page 96 

of Traffic Performance at Urban Street Intersections.7 

As an illustrative example, let it be required to find the average 

numberof vehiclesretarded for a traffic volume of 228 vehicles per 

hour on a single lane with the signal set for 30 second go and 20 

secondstop. The average number of vehicles arriving during the 

20 second red period is 1.27 vehicles [(20 X 228)/3600]. (This 

might be approximatelyone for each of three cycles and two for 

the fourth cycle.) As explained, these 1.27 vehicles tend to in­

crease the effective length of the red signal. Reference to Figure 

V. 22. shows that 1.27 vehicles increase the blocking period by 

about 6.4 seconds. The blocking period may now be considered to 

be 26.4 seconds (20 + 6.4). A 26.4 second blocking period, how­
ever, will retard about 1.67 vehicles, [(26.4 X 228)/3600]. 

The increase of the blocking period due to 1.67 vehicles is 7.7 

secondsand the blockingperiodis nowestimatedto be 27.7 seconds. 

During the 27.7 seconds of blocking period 1.75 vehicles will be 

retarded to increase the estimate of the blocking period to 27.95 

seconds. By further successive approximation, the number of ve­

hicles retarded can be obtained with any degree of accuracy de­

sired. This information may be shown in tabular form: 

Table V. 10. AVERAGE NUMBER OF VEHICLES STOPPED WITH 228 

VEHICLES PER Ho-UR PER LANE AND 20 SECOND RED PERIOD 

Length of Average No. of 
Blocking Period Vehicle8 Retarded 

Ist Approximation 20 seconds 1.27 
26.4 1.67 

3rd 27.7 1.75 
4th 27.95 1.77 
5th 28 1.77 

4Ond 
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FIGUREV.22. ADDITIONAL BLOOKING PERIODS CREATED WHEN 
VARIOUS NUMBERS OF VEHICLES ARE RETARDED 
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For this particularexample it seems sufficiently accurateto use an 
average of 1.77 vehicles per red signal. This shows that with a 
volume of 228 vehicles per hour per lane a 20 second red interval 
becomes, in effect, a 28 second blocking period. 

V. 27. The Average Arrival Method of DeterminingDelay. A practical 
method of calculatingthe time loss for a given number of vehicles 
stopped is based upon an assumptionas to the arrival time of the 
first vehicle. The method may be illustrated as follows: 

Let the red interval be 30 seconds. It is assumed that the first 
vehicle will arrive on the averageat the mid-point, wait 15 seconds, 
and it will lose 3.8 seconds in entering the intersection. To this is 
added another two seconds lost in accelerating to a speed of 
15 miles an hour, giving a total loss of 20.8 seconds. (The accelera­
tion loss would be greater for higher speeds). The total loss (using 
symbols) is 

R 
- + 3.8 + a
2 

wherein R equals the red interval and a the acceleration loss for 
a given normal traveling speed. The second vehicle arrives on the 
average at the mid-pointof the stop period of R + 5.5, and leaves 
at R + 6.9. The time loss is equat to 

(R + 5.5)
R + 6.9 - 

 + I = 20.15 seconds 

2 
wherein I is a the acceleration loss. 
The loss for ihe third vehicle is: 

R + 9.6 (R + 3.8 + 3.1 + 1.7) + 
2 

- 39.6 - (30 + 3.8 + 3.1 + 1.7) + I;== 21.3 seconds 
2 

The loss for the fourth vehicle is: 

(R + 9.6 d- 1.7)
R + 12 - - 21.35 seconds. 

2 
No acceleration loss is added for the fourth vehicle since it has 
reached normal speed by the time it enters the intersection. 
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By following this method the delay for any number of vehicles 

retarded may be calculated, but it is only the method that is of 

interest to us here. According to the reference just mentioned the 

observeddelay agrees very closely with that calculated. The delay 

occurring in traffic with various proportions of trucks, street cars, 

and other types of vehicles needs to be observed to obtain more 

accurate and representative field constants. 

V. 28. Rare Events (Accidents). There are many events in traffic 

that are comparatively rare. This is particularly true of certain 

types of accidents. Taken as a whole, traffic accidents exact a 

high toll in lives and property but the average driver is rarely 

involved in a serious mishap. Problems involving rare events may 

be analyzed by the Poisson distributionwhich is also known as the 

law of small chances. 

One study that made use of the law was conducted by Dr. H.M. 

Johnson14. He examinedthe accident histories of 29,531 Connecti-

Table V. 1 1 

ACT-UAL AND EXPECTED DISTRIBUTION OF ACCIDENTS, INCLUDING 

CASUALTIES AND PROPERTY DAMAGE EXCEEDING $25, REPORTED 

TO THE COMMISSIONER OF MOTOR VEMCLES OF CONNECTICUT, 

1931-36, IN A LICENSED DRIvER SAMPLE SELECTED AT RANDOM. 

Accident8 per Operatom having theme accident8 

operator during 
experience 

Actual 
number 

Expected 
number 

Difference 

0................ 

1................ 

2................ 

3................ 

4................ 

23,881 

4,503 

936 

160 

33 

23,234 

5,572 

668 

53 

647 

-1,069 

268 

107 

5................ 
6................ 

7................ 

14 
3 

I 

4 47 

Totals...... 29,531 29,531 0 

Note: The probability that the differences between the actual and expected distributions 
6 due to chance = 1.6(10)-l", which is insignificant. 
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cut drivers selected at random, each of whom had been licensedfor 
the period 1931-1936. 

Among these 29,531 drivers there accrued 7,082 accidentswhich 
involved 5,650 operators, Mr. Johnson found that the accidents 
were not distributed among the drivers according to the law of 
chances for which the sole parameter is the rate per operator. He, 
therefore, concluded that some operators were accident prone for 
some reason that could only be determined experimentally. 

The table shows the actual accidents, the expected number as 
calculated from the Poisson distribution and the difference be­
tween the theoretical and the actual number. 

It may be noted that there are more accident-free drivers than 
accounted for by the laws of chance and also more repeaters with 
a correspondingdeficiency of drivers having a moderate accident 
rate. 

Mr. Johnson found among other things, that drivers who were 
under 16-20 years old at the beginning of the experience and under 
22-27 years old at its close had 1.47 times as many of the non-
personal accidents as they would have if the distribution of acci­
dents were independent of age. That this difference is not acci­
dental, according to Mr. Johnson, is evidenced by the fact that 
the -Drobabilitv of tfie i-ndt-,-ni-.-ndpnev-hypotliesi.-, heing tr e is less 
thanlo-24. 

The significance of Air. Johnson's report is that it demonstrates 
the use of the Poisson distribution in studying rare events. Sup­
pose that one wishes to know whether a driver having 3 accidents 
in 6 years is an accident-prone driver. According to Mr. Johnson's 
figures the average for all drivers is 

7082 
- 
 .2398 

 .24 accidents 
 m. 
29531 

With this value of m we find from a Poisson distribution table 
that the probability of a driver having 3 accidents is .0018 or .18 
per cent. This means that the chances are 100 to .18 or approxi­
mately 550 to I against an average driver's having 3 accidents. We 
may conclude, therefore, that a driver who has this many mishaps 
is a bad risk. 
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V. 29. Rare Events (Accidents at Intersections). Washington, D. C. 

has a total of 7,683 intersections open to traffic. During the year 

1950 there were 6,211 accidents at intersections. Suppose it is 

desired to know how many accidents at an intersection make it 

accident prone. 
6211 

The average number of accidents - = .8 ;:= m. According
7683 

to the Poisson distribution, the probabilitiesof accidents occurring 

at an intersection are as follows: 

Table V. 12 

Number of Accidents Probability 

2 .0438 

3 .0383 
4 .0077 

6 .0012 

3 or more .0474 

4 or more .0091 

5 or more .0014 

Suppose that it is decided that when the odds are 20 to I that 
the accidents occurring are not due to chance alone, an inter­

section is to be considered accident prone. According to the table, 

3 or more accidents will occur due to chance 4.74 per cent of the time. 

This ratio of one to .0474 is over 20 to 1, hence an intersection 

having over 3 accidents would be considered unduly hazardous. 

Records are not available as to the distribution of intersections 

having less than 5 accidents, but of those with five or more it is 

possible to compare the actual occurrence of accidents with the 

number expected to occur according to the Poisson distribution. 

See Table V. 13. 

This procedure is presented to illustrate a method of approach 

and not as a suggested analysis, for obviously the records should 

be much more complete. Clearly the volume of traffic is one of the 

most important, if not the most important, factor. 

V. 30. Size of Sample to Determine Average Number of Car Passen­

gers. In making a traffic survey it is required to know the average 

number of persons per car. The problem is to determine the size 
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Table V.13. NumBER OF INTERSECTIONS IN WASIIINGTON, 

D.C. AT wmcH 5 OR moRE ACCIDENTS OCCURRED IN 1950 

Number of 
Number of Number of Total Number Intersections 

Intersections Accidents of Accidents Expected to have 

having Accidents Per Intersection Numberof Accidents 

Shown in Col. 2 

85 5 425 27 

68 6 408 40 

76 7 532 60 

55 8 440 55 

22 9 198 54 

32 10 320 47 

12 11 132 38 

10 12 120 28 

7 13 91 19 

6 14 70 12 

9 15 135 7 

4 16 64 4 

4 17 68 2 

4 18 72 1 

3 19 57 Less than 1 

5 20 100 

2 21 42 

1 22 22 

1 23 23 

1 27 27 

1 28 28 

1 32 32 

1 37 37 

1 45 45 

1 64 64 

1 86 86 

412 3638 

Note: In this case, rn 3638 8.8. The last column, Number of Intersections Expected to 

have Number of accidents shown in Column 2, can be obtained by multiplying the probabilities 
of occurrence taken directly from "Poisgon Exponential Binomial Limits,"' by 412, the total 
number of intersections. it may also be obtained from Appendix Table No. VI, page 226. This 
table gives the probability of x or more events occurring during a given interval, when m, the 
average number of events per interval is known. In using Table VI, the probability that x, 
* specific number of events will occur, is equal to the difference between tile probabilities of 
* or more and (x + 1) or more events occurring. In the above table, the pure chance probability 
of 5 accidents occurring at an intersection is the difference in probability of 5 or more and 6 or 
more accidents occurring. Multiplying this difference by the total number of intersections gives
the number of intersections expected to have 6 accidents. Referring again to Table VI, 0.872 
(the probability that 6 or more accidents will take place) subtracted from 0.938 (the probability 
that 5 or more accidents will take place) leaves 0.066 or 6.6 %. Multiplying 412 by 6.6 % gives 
27, the number of intersections that may be expected to have 5 accidents. 
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of sample to give a 95 per cent assurance that the mean valuewill 

not be in error more than 0. 1. 
Suppose that the following typical occupancy count has been 

made: 

Occupants(x) 

1 

2 

3 
4 

5 

Number of Observations (f) 

15 

10 

4 
2 

1 

Mean ;.-- X = 1.9 N = 32 

The standard deviation s is first calculated and found to be 1.054. 
From formula IV.7.3. 

N- I S2 (1.054)2 1.1 I 


2 2 .1)2 .01 

From Appendix Table 3, Ratio of Degrees of Freedom to (t2), We 

find that with a probability level of 5 per cent (95 per cent assur­
,92 

ance) that for N - I 
 400, that 103.069 and for N - 1 

0 
500, ii = 128.836. Since II I lies between these two valueswe 

conclude that the size of sample required is between 400 and 500, 

and if we wish to be conservative we take the higher value. Also 
it would have been better to have taken a larger (preliminary) 

sample to obtain the trial standard deviation. 

V. 31. Size of Sample Required in Speed Study. It is desired toknow 

the average speed on each block within one mile per hour on a 

street with 60 intersections. It is also desired that there be a 95 

per cent assurance as to the result. It is assumed that the speed 

will vary with the volume of traffic, the weather, the amount of 

parking, and perhaps other conditions. The problem is to find the 

required size of sample and, having determined this, to recom­

mend a method of making the observationsthat will yield a truly 

random sample. 
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The logical procedure is to take a random sample of about 
100 observations in order to obtain an estimated standard devia­
tion to be used in determining the size of sample. Suppose from 
this sample that it is found that the speed range is from 5 to 
40 miles per hour and that the standard deviation, s, equals 
4.5 miles per hour. 

We use the t-distributionto find the size of sample. From for­
mula IV.7.3. 

N-I S2 

t2 C2 

we find the ratio of N -1 to t2 by insertingthe values for s and c. 
The standard deviation s in the present example, as found from 
the preliminary sample, is 4.5 miles per hour and the allowable 
error is one mile per hour. 

N-1- S2 (4.5)2 20.25 
Hence, - - - - _= - == 20.25

t2 p2 12 1 

From a table of ratio of degrees of freedom tot2we find that 

with a probabilitylevel of 6 per cent that a ratio of N-I 20.202 
t2 

corre-onds to N 1 = 80 and 22.727 correspondsto N - 1 
 90. 
Therefore, we conclude that N, the size of sample, lies between 81 
and 91. To be on the safe side, we may say that a sample of 100 
observations will give us at least a 95 per cent assurance that 
the average speed will be obtained within ± I mile per hour. If 
a 99 per cent assurance is desired the size of sample according to 
the table would be between 100 and 200. 

The next phase of the problem is that of getting a truly random 
sample. Obviously taking all the speeds on a day of light traffic 
would give a biased result. Clearly there must be some knowledge 
of the relative duration of the various conditions that influence 
speeds. Increasing the size of the sampleso that observationsmight 
"e distributed over a greater number of hours of the day, more 
days of the week and more months of the year would assure a 
better estimate of the speed. Increasing the size of sample to 200 
should give sufficient coverage. 
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Since the speed is desired for each block it is necessary that 

observations be taken in each block. Some accurate mechanical 

device that is free from human errors is always preferable. This, 

however, would require either 60 recording devices or a rotation 

of a lesser number. Since they would give "spot" checks they 

would also need to be rotated to different positions in the blocks. 

Another way would be to have an observer's car "float" with 

the traffic. The observer as well as recording speed could also note 

pertinent information such as the amount of parking. Manual re­

cording could be supplemented or replaced by some mechanical 

device such as takinga picture of the conditionsin each block and 

including in the picture a clock to show the time of reaching each 
intersection. The cost of such pictures taken on 16 mm film would 

be negligible. 

The particularmethod to be employed in this or any other pro­
blem involving the collection and analysis of data should be se­

lected by the engineer in charge after he has made a preliminary 

study of both the nature of the data and the reliability and cost of 

the various possible methods of conducting the field study. Sta­

tistics is merely an aid to the engineer and not a substitute for 

experience and judgment. 
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APPENDIX Table I


Areas Under the Normal Probability Curve


From the Mean to Distances x from the Mean, Expressed as Decimal


Fractions of the Total Area 1.0000 
The proportionalpart of the curve included between an ordinate erected 

at the mean and an ordinate erected at any given value on the X axis can 
be read from the table by determiningx (the deviation of the given value 

from the mean) and computing x Thus if $25.00, a = $4.00, and 

it is desired to ascertain the proportionof the area under the curve between 
x $5.00ordinates erected at the mean and at $20.00; x = $5.00 and - = ­
CT $4.00 

1.25. From the table it is found that .3944, or 39.44 per cent, of the

entire area is included.


X

.00 01 .02 .03 .04 .05 .06 .07 .08 .09


0.0 .0000 .0040 .0080 .0120 .0159 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1564 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879


0.5 .1916 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2862

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389


1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3718 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4083 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319


1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4430 .4441

1.6 .4452 .4463 .4474 .4485 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4666 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4758 .4762 .4767


2.0 .4773 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4865 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936


2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4976 .4976 .4977 .4977 .4978 .4979 .4980 .4980 .4981

2.9 .4981 .4982 .4983 .4984 .4984 .4984 .4985 .4985 .4986 .4986


3.0 .49865 .4987 .4987 .4988 .4988 .4988 .4989 .4989 .4989 .4990

3.1 .49903 .4991 .4991 .4991 .4992 .4992 .4902 .4992 .4993 .4993

3.2 .4993129

3.3 .4996166

3.4 .4996631

3.5 .4997674


3.6 .4998409

3.7 .4998922

3.8 .4999277

3.9 .4999519

4.0 .4999683


4.5 .4999966


Methode 
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APPENDIX Table II 

Table of Values of t 
For Given Degrees ofFreedom (n) andat Specified Levels of Significance (P) 

In the use of this table it is to be remembered that a level of significance 
refers to both tails of the distribution. Thus, the .02 level (P = .02) 
includes .01 of the area of the curve in each tail. It is to be observed that 
this table is set up in a different form from the table of normal curve areas, 

Appendix Table I. The table of normalcurve areasshowed values ofx- in the 
a 

margins and proportionate areas from K to x- (one direction only) in the 

body. A tail of the normal distribution is obtained by subtracting this 
value from .5000. Doubling the resulting figure yields the level of signi­
ficance. The t table, on the other hand, shows n (degrees of freedom) in 
the stub, t in the body, and P (the level of significance) in the caption. 
The last row of the t table, for N = oo, shows t values as obtained from 
the normal curve. 

Level of Significance (P)
Ift 

.9 .8 .7 .6 .5 .4 .3 .2 .1 .05 .02 .01 .001 
1 .158 .325 .510 .727 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619
2 .142 .289 .445 .617 .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598
3 .137 .277 .424 .584 .765 .978 1.250 1.638 2.353 3.182 4.541 6.841 12.941
4 .134 .271 .414 .569 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 .132 .267 .408 .559 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 
6 .131 .265 .404 .553 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 .130 .263 .402 .549 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 6.405
8 .130 .262 .399 .546 .706 .889 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 .129 .261 .398 .543 .703 .883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

lu IZU ZUU .307 .D542 IVU .611d 1.093 1.372 1.812 2.228 2.764 3.169 4.G87 
11 .129 .260 .396 .540 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 .128 .259 .395 .539 .605 .873 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 .128 .259 .394 .538 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 .128 .258 .393 .537 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 .128 .258 .393 .536 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 4.073 
16 .128 .258 .392 .535 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 .128 .257 .392 .534 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 .127 .257 .392 .534 .688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 .127 .257 .391 .533 .688 .861 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 .127 .257 .391 .533 .687 .860 1.064 1.325 1.725 2.086 2.528 2.845 3.850 
21 .127 .257 .391 .532 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.819
22 .127 .266 .390 .532 .686 .858 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 .127 .256 .390 .532 .685 .858 1.060 1.319 1.714 2.069 2.600 2.807 3.767
24 .127 .256 .390 .531 .685 .867 1.069 1.318 1.711 2.064 2.492 2.797 3.745
25 .127 .256 .390 .531 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725 
26 .127 .256 .390 .531 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 .127 .256 .389 .531 .684 .865 1.057 1.314 1.703 2.052 2.473 2.771 3.690
28 .127 .256 .389 .530 .683 .855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 .127 .256 .389 .530 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659
30 .127 .256 .389 .530 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646 
40 .126 .255 .388 .529 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 -26 .254 .387 .527 .679 .848 1.046 1.296 1671 2000 2.3.90 2.660 3.460

120 .126 .254 .386 .526 .677 .845 1.041 1.289 1:658 580 2.358 2.617 .3.373 
oo .126 .253 .385 .524 .674 .842 1.282 1.645 1.960 2.326 2.576 3.291 

Appendix Table 11 Is reprinted from Fisher and Yates: "Statistical Tables for Biological,
Agricultural, and Medical Research", published by Oliver and Boyd, Ltd., Minburgh, by per­mission of the authors and publishers. 
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APPENDIX 

Table III 

RATio OF DEGREES OF FREEDOM TO (t)2 

Degrees Probability Level 
Of 

Freedom 5% 2% 1% 

1 0.006 0.001 0.0002 

2 0.108 0.041 0.020 

3 0.296 0.145 0.088 

4 0.519 0.285 0.189 

5 0.756 0.442 0.308 

6 1.002 0.607 0.437 

7 1.252 0.778 0.572 

8 1.504 0.954 0.711 

9 1.759 1.131 0.852 

10 2.015 1.309 0.996 

11 2.271 1.489 1.140 

12 2.527 1.670 1.286 

13 2.786 1.851 1.433 

14 3.043 2.033 1.580 

15 3.303 2.216 1.727 

16 3.560 2.398 1.875 

17 3.818 2.580 2.024 

18 4.078 2.764 2.173 

19 4.337 2.947 2.321 

20 4.596 3.130 2.471 

21 4.854 3.312 2.620 

22 5.115 3.498 2.768 

23 5.373 3.680 2.919 

24 5.634 3.865 3.068 

25 5.891 4.048 3.219 

26 6.151 4.231 3.367 

27 6.412 4.415 3.516 

28 6.676 4.601 3.668 

29 6.934 4.784 3.818 

30 7.195 4.969 3.967 

40 9.803 6.813 5.447 

60 15.000 10.504 8.480 

120 30.596 21.582 17.523 
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APPENDIX Table IV 

Nv_
o 	 I.DONNC
 =
Nt_. 

0 1
 Oq 0! 11
 1
 11
 1
 1i 1
 1
 Ci 11
 1
 _
 11R 9 09 1
 t,: 01 v: -I 'R C
 "! -
 -
 t
: 
omwwo 	 N
10
m N`

_ 
ONM
 CMM-N ".

Com 

0.0 ! 
N N- C04 
N E ONO. " 
 N ! '
" OA, I ""' ! 0"o '] I 1"i 1, ! !=
' 5, Wm '! 

N
O,
C, 0

X.w Cl

_10 Nmwo" NMMWN 
M-d-
w I
Ol
o Nw"
 ooom
 mmmm. "10
wm 

0 IR C! C
 0! C
 O
 1
., R 11
 ci t1: 0! IR _! Iq 1
 ldl 1
 _! 11
 C
 0! 14! C
 cl
 11R 1:
 ai 11
 -9 
CO-MID 	 10.0 0 - M llf
 0 
 0 0 0 M " 0 
 mo-N
 
`Owmo 

NNN NNNNM ,
Mmmm M .... .... 

N N " _Xw MNWM- M" Nmm M
C
o mmwoc COMMN 
."m=w 	 MN=_
 mc
"MN 

O It -
 oy 11
 C
 C
 11R_! 11
 1i IR C! 11
 O
 Oi IR C
 1i IR 1
 O
 11R C
 0! 11
 1
 1i 11
 
. 
_O.m oww

_ N

=w MONM



0 1
 .. - N NNNN". Nommm =mm""


H_nwo 	 N

M
 1.1
 
 M -.41 0 

N
N 
M
_m 
M
Oo _Nww
 mm=
, 00 co 
 
 

0 09 c
 o
 't, c? -
 R "? C
 IR c
 c
 11
 c
 9 "? o9 1_! It 
e c
 1i It le Ily c? L
 1
: 
=.NmId, 	 

wo
 Nm
=
 
HNNNN 	 NNNmm =mmmm 

N=m
N 
m

N 
"owo­
1
 L`: c
 ci i 
m"

m 
N
NNN N=mmm mmmm" 

N=Nc,
 M M O Gq 
N
­

H
ww 
om"" m
w
_ 

Q N 14Rci 11
 1:
 o! Iq o
 <
 c! It 11R oR c
 1i 1
 11
 11
 rl: c
 C
 -i 1
 It Lq IR t
 o
 R -i 
1! 
mo.Nm "
Ioxm _N"
c 

NNNNN NNNNm mmm=.* 

O.c
NN 	 m
.m
 mmw
v 
4__o 
oWN
w 	 m
_NN -cm
 
m.O
 
 O ID M 

M C
 't 11Roq 1=
 9 cl
 1
 1
 L": cq R -! q cq 'R 'R t
 o
,:
 C
C
 -! o! . -
 ,
 ,

-N="= Damon N-111
c
 mmo
N m",D
w mo.N. 

HNNN N N N N N NMMMM 

M N 
.om
 mwwx
 ol0coo"""mm 	 mmmw.,
 m-mmm mmmmm 
o 	 1
 1
 1
 1
 c
 c? I? c
 ? ? c? 1
 o? 1
 IT I? I? 1
 I? -
 ? 1
 


=
mO 
NNN"N 

wH
M
 - - =- _- -_ : -_ H. N- . N
 
M, 
:oMNNN M"
Io w=N"
 

o! C
 c
 1
 t1: E,-: 1
 1
 11
i i 42 N. 9m lo 
xmco 
 N _
 
 

 
o -. 1 NN""N 

-u N 
(D oN.*cm NN
=m Lt"
No omw.,

 

LNOm
 xomco 
o
H_ Now-= 
C
 IR 1
 R oq 9 1
 1i c
 1
 1
1 It 1
 Ili C? 1
 rl
 11
 11
 c
 1_
 c
 11
 c
 117 9 It 1
 

mm".z= lo
w=o lo w 00 oo.Nm 

NNNN 

41 co 
m"No
 N

_m o
wc,= N"=w= 

o <
o!9c
 c
 -q o
 1
 IR oR IR 1! .lz
 
- NNmv" o=
t
w moo
N 

N N n 
w-o. m - Woom 
mcMN4 = ,N 
_Z;o 
,'NDz,

I
R o
 1_! o
 lio
R 
HNNmm o 1'
 ID k- co = o 0 
 N M M.* C, c 
M 

M

Nd,


"""Nm =w
nw
 "f 
'D 
m
mmo o
w 

owm 
o

m oN"
o 

0 c
 1
 q 11
 c
 1
 _! El: o
 C
 11Rci c
 11
 oi a
 11Ro! c
 11
 It 1i 1
 9 v
 
HNNm ml*"

 w

wm mo-N M " 

c 

0 

N=
mw m

oc
 cqco
mo 
NIDIZ
 w=
=m 
oNHMo 
m
m
 
_o=N 
Q m
 O
O
N c
 
o 

c
 _
 c
 I? c
 c! 11
 c? 9 C? 9 _
 11
 D! "y t R 
 9 og L
,
 og 
 t 
? o!,:
 
H-NN co M 00moo- N N M 

Nm"
 
Dtm
o 
NNNNN 	 NNNNm 

For large values of n compute 0ji, the distribution of which is ap. 

proximately normal around a mean of f2n - I with a 
 1. P is the ratio 

of one tail of the normal distribution to the area under the entire curve. 

A detailed table of the probability of various values of Z' for one degree 

of freedom is given in G. U. Yule and M. G. Kendall, An Introduction to the 

Theory of Statistics, Ilth edition, pp. 534-535, Charles Griffin and Co., 

London,1937. 

Appendix Table IV is reprinted from Fisher and Yates: "Statistical Tables for Biological, 
Agricultural, and Medical Research", published by Oliver and Boyd, Ltd., Edinburgh, by per­
mission of the authors and publishers. 
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RE
ATIVE HEIGHT FiGURE I & II 
OF ORDINATE 

2 3 4 

RELATIVE HEIGHT VALUE OF X' 
OF ORDINATE 

,n= 5 

n. p 

.X, 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

VALUE OF X. 

Distribution of X2 for n = 1, n = 5, n = 9, and n = 17. The maximum 

ordinate is at 72 = n - 2 except when n = 1. When n = 1, the max­

imum ordinate is at Z2 
 0. When n = 1, there is 4.55 per cent of the 

curve beyond X2 = 4. Beyond Z2 = 30 there is .0015 of one per cent 

of the curve when n = 5; .0439 of one per cent of the curve when n = 9; 

2.6345 per cent of the curve when n = 17. The two charts have been 

drawn to different scales. If the vertical axis of the upper chart is ex­

panded to approximately 20 times its length and the horizontal axis is 

contracted to about one-eighth of its length, the curves will be roughly 

comparable as to area. 
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APPEN­
5 0/0 and 1 0/, Points for Distribution of F, 

n, degrees of freedom (for greater mean square)
n, 

1 2 3 4 6 6 7 8 9 10 11 12 

1 161
4,052 

200
4,999 

216
5,403 

226
5,625 

230
5,764 

234
5,859 

237
5,928 

239
5,981 

241
6,022 

242
6,056 

243
6,082 

244
6,106 

2 18.51 
98.49 

19.00 
99.00 

19.16 
99.17 

19.25 
99.25 

19.30 
99.30 

19.33 
99.33 

19.36 
99.34 

19.37 
99.36 

19.38 
99.38 

19.39 
99.40 

19.40 
99.41 

10.41 
99.42 

3 10.13
34.12 

9.55
30.82 

9.28
29.46 

9.12
28.71 

9.01
28.24 

8.94
27.91 

8.88
27.67 

8.84
27.49 

8.81
27.34 

8.78
27.23 

8.76
27.13 

8.74
27.05 

4 7.71
21.20 

6.94
18.00 

6.59
16.69 

6.39
15.98 

6.26
15.52 

6.16
15.21 

6.09
14.98 

6.04
14.80 

6.00
14.66 

5.96
14.54 

5.93
14.45 

5.91
14.37 

6.61
16.26 

5.79
13.27 

5.41
12.06 

5.19
11.39 

5.05
10.97 

4.95
10.67 

4.88
10.45 

4.82
10.27 

4.78
10.15 

4.74
10.05 

4.70
9.96 

4.68
9.89 

6 5.09
13.74 

5.14
10.92 

4.76
9.78 

4.53
9.15 

4.39
8.75 

4.28
8.47 

4.21
8.26 

4.15
8.10 

4.10
7.98 

4.06
7.87 

4.03
7.79 

4.00
7.72 

7 5.59
12.25 

4.74
9.55 

4.35
8.45 

4.12
7.85 

3.97
7.46 

3.87
7.19 

3.79
7.00 

3.73
6.84 

3.68
6.71 

3.63
6.62 

3.60
6.54 

3.57
6.47 

8 6.32
11.26 

4.46
8.65 

4.07
7.59 

3.84
7.01 

3.69
6.63 

3.58
6.37 

3.50
6.19 

3.44
6.03 

3.39
5.91 

3.34
5.82 

3.31
5.74 

3.29
5.67 

9 5.12
10.56 

4.26
8.02 

3.86
6.99 

3.63
6.42 

3.48
6.06 

3.37
5.80 

3.29
5.62 

3.23
5.47 

3.18
5.35 

3.13
5.26 

3.10
5.18 

3.07
5.11 

4.96
10.04 

4.10
7.56 

3.71
6.55 

3.48
5.99 

3.33
5.64 

3.22
5.39 

3.14
5.21 

3.07
5.06 

3.02
4.95 

2.97
4.85 

2.94
4.78 

2.91
4.71 

11 4.84
9.65 

3.98
7.20 

3.59
6.22 

3.36
5.67 

3.20
5.32 

3.09
5.07 

3.01
4.88 

2.95
4.74 

2.90
4.63 

2.86
4.54 

2.82
4.46 

2.79
4.40 

12 4.75
9.33 

3.88
6.93 

3.49
5.95 

3.26
5.41 

3.11
5.06 

3.00
4.82 

2.92
4.65 

2.85
4.50 

2.80
4.39 

2.76
4.30 

2.72
4.22 

2.69
4.16 

is 4.67
9.07 

3.80
6.70 

3.41
5.74 

3.18
5.20 

3.02
4.86 

2.92
4.62 

2.84
4.44 

2.77
4.30 

2.72
4.19 

2.67
4.10 

2.63
4.02 

2.60
3.96 

14 4.60
8.86 

3.74
6.51 

3.34
5.56 

3.11
5.03 

2.96
4.69 

2.85
4.46 

2.77
4.28 

2.70
4.14 

2.65
4.03 

2.60
3.94 

2.56
3.86 

2.53
3.80 

4.54
8.68 

3.68
6.36 

3.29
5.42 

3.06
4.89 

2.90
4.56 

2.79
4.32 

2.70
4.14 

2.64
4.00 

2.59
3.89 

2.55
3.80 

2.51
3.73 

2.49
3.67 

16 4.49
8.53 

3.63
6.23 

3.24
5.29 

3.01
4.77 

2.85
4.44 

2.74
4.20 

2.66
4.03 

2.59
3.89 

2.54
3.78 

2.49
3.69 

2.45
3.61 

2.42
3.55 

17 4.45
8.40 

3.59
6.11 

3.20
5.18 

2.96
4.67 

2.81
4.34 

2.70
4.10 

2.62
3.93 

2.55
3.79 

2.50
3.68 

2.45
3.59 

2.41
3.52 

2.38
3.45 

18 4.41
8.28 

3.55
6.01 

3.16
5.09 

2.93
4.58 

2.77
4.25 

2.66
4.01 

2.58
3.85 

2.51
3.71 

2.46
3.60 

2.41
3.51 

2.37
3.44 

2.34
3.37 

19 4.38
8.18 

3.52
5.93 

3.13
5.01 

2.90
4.50 

2.74
4.17 

2.63
3.94 

2.55
3.77 

2.48
3.63 

2.43
3.52 

2.38
3.43 

2.34
3.36 

2.31
3.30 

4.35
8.10 

3.49
5.85 

3.10
4.94 

2.87
4.43 

2.71
4.10 

2.60
3.87 

2.52
3.71 

2.45
3.56 

2.40
3.46 

2.35
3.37 

2.31
3.30 

2.28
3.23 

21 4.32
8.02 

3.47
5.78 

3.07
4.87 

2.84
4.37 

2.68
4.04 

2.57
3.81 

2.49
3.65 

2.42
3.51 

2.37
3.40 

2.32
3.31 

2.28
3.24 

2.25
3.17 

22 4.30
7.94 

3.44
5.72 

3.05
4.82 

2.82
4.31 

2.66
3.99 

2.55
3.76 

2.47
3.59 

2.40
3.45 

2.35
3.35 

2.30
3.26 

2.26
3.18 

2.23
3.12 

23 4.28
7.88 

3.42
5.66 

3.03
4.76 

2.80
4.26 

2.64
3.94 

2.53
3.71 

2.45
3.54 

2.38
3.41 

2.32
3.30 

2.28
3.21 

2.24
3.14 

2.20
3.07 

24 4.26
7.82 

3.40
5.61 

3.01
4.72 

2.78
4.22 

2.62
3.90 

2.51
3.67 

2.43
3.50 

2.36
3.36 

2.30
3.25 

2.26
3.17 

2.22
3.09 

2.18
3.03 

4.24
7.77 

3.38
5.57 

2.99
4.68 

2.76
4.18 

2.60
3.86 

2.49
3.63 

2.41
3.46 

2.34
3.32 

2.28
3.21 

2.24
3.13 

2.20
3.05 

2.16
2.99 

26 4.22
7.72 

3.37
5.53 

2.98
4.64 

2.74
4.14 

2.59
3.82 

2.47
3.59 

2.39
3.42 

2.32
3.29 

2.27
3.17 

2.22
3.09 

2.18
3.02 

2.15
2.96 

The function, F= e with exponent 2z, is computed in part from Fisher's table VI (7). Ad-

Used by Permission of Iowa State College Press, Publishers of Snedecor's
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DIX Table V

(5 0/, in Roman Type, I 0/( in Bold Face Type).


n, degrees of freedom (for greater mean square)

14 16 20 24 30 40 50 75 100 200 500 00


245 246 248 249 250 251 252 253 253 254 254 254 1

6,142 6,169 6,208 6,234 6,258 6,286 6,302 6,323 6.334 6,352 6,361 6,366 
19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 10.49 19.49 19.50 19.50 2

99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99.50 

8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.57 8.56 8.54 8.54 8.53 3

26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12 
5.87 5.84 5.80 5.77 5.74 5.71 5.70 5.68 6.66 5.65 5.64 5.63 4


14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46 

4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.40 4.38 4.37 4.36 5

9.77 9.68 9.55 9.47 9.38 9.29 9.74 9.17 9.13 9.07 9.04 9.02 
3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67 6

7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.94 6.90 6.88 
3.62 3.49 3.44 3.41 3.38 3.34 3.32 3.29 8.28 3.25 3.24 7

6.35 6.27 6.15 6.07 5.98 5.90 5.85 5.78 5.75 5.70 5.67 5.65 
3.23 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.94 2.93 8

5.56 5.48 5.36 5.28 5.20 5.11 5.06 5.00 4.96 4.91 4.88 4.86 

3.02 2.98 2.93 2.90 2.86 2.82 2.80 2.77 2.76 2.73 2.72 2.71 9

5.00 4.92 4.80 4.73 4.64 4.56 4.51 4.45 4.41 4.36 4.33 4.31 
2.86 2.82 2.77 2.74 2.70 2.67 2.64 2.61 2.59 2.56 2.55 2.64 10

4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91 
2.74 2.70 2.65 2.61 2.57 2.53 2.50 2.47 2.45 2.42 2.41 2.40 11

4.29 4.21 4.10 4.02 3.94 3.86 3.80 3.74 3.70 3.66 3.62 3.60 
2.64 2.60 2.54 2.50 2.46 2.42 2.40 2.36 2.35 2.32 2.31 2.30 12

4.05 3.98 3.86 3.78 3.70 3.61 3.56 3.49 3.46 3.41 3.38 3.36 
2.55 2.51 2.46 2.42 2.38 2.34 2.32 2.28 2.26 2.24 2.22 2.21 13

3.85 3.78 3.67 3.59 3.51 3.42 3.37 3.30 3.27 3.21 3.18 3.16 
2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13 14

3.70 3.62 3.51 3.43 3.34 3.26 3.21 3.14 3.11 3.06 3.02 3.00 
2.43 2.39 2.33 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07 15

3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87 
2.37 2.33 2.28 2.24 2.20 2.16 2.13 2.09 2.07 2.04 2.02 2.01 16

3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.89 2.86 2.80 2.77 2.75 
2.33 2.29 2.23 2.19 2.15 2.11 2.08 2.04 2.02 1.99 1.97 1.96 17

3.35 3.27 3.16 3.08 3.00 2.92 2.86 2.79 2.76 2.70 2.67 2.65 

2.29 2.25 2.19 2.15 2.11 2.07 2.04 2.00 1.98 1.95 1.93 1.92 18

3.27 3.19 3.07 3.00 2.91 2.83 2.78 2.71 2.68 2.62 2.59 2.57 
2.26 2.21 2.15 2.11 2.07 2.02 2.00 1.96 1.94 1.91 1.90 1.88 19

3.19 3.12 3.00 2.92 2.84 2.76 2.70 2.63 2.60 2.54 2.51 2.49 
2.23 2.18 2.12 2.08 2.04 1.99 1.96 1.92 1.90 1.87 1.85 1.84 20

3.13 3.05 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42 
2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.87 1.84 1.82 1.81 21

3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36 

2.18 2.13 2.07 2.03 1.08 1.93 1.91 1.87 1.84 1.81 1.80 1.78 22

3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.37 2.33 2.31 
2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76 23

2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26 
2.13 2.09 2.02 1,98 1.94 1.89 1.86 1.82 1.80 1.76 1.74 1.73 24

2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.33 2.27 2.23 2.21 
2.11 2.06 2.00 1,96 1.92 1.87 1.84 1.80 1.77 1.74 1.72 1.71 25

2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17 
2.10 2.05- 1.09 1,05 1.90 1.85 1.82 1.78 1.76 1.72 1.70 1 691 26

2.86 2.77 2.66 2,58 2.50 2.41 2.36 2.28 2.25 2.19 2.15 2:13 

ditional entries are by interpolation, mostly graphical. 
-StatisticalMethodsl4th Edition". 
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50/, and I 0/, Points for the Distribution of F. 

degrees of freedom (for greater mean square) 

1 2 3 4 6 6 7 8 9 10 11 12 

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 

34 4.13 3.28 2.88 2.66 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2,75 2.69 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.00 1.06 
7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 

55 4.02 
7.12 

3.] 7 
5.01 

2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 
4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47 

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 

100 3.04 3.09 2.70 2.46 2.30 2.10 2.10 2.03 1.97 1.92 1.88 1.85 
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.05 1.90 1.86 1.83 
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2." 2.37 2.30 

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 
6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 

00 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 
6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 
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Table V (Continued)


(5 0/, in Roman Type, 1 0/, in Bold Face Type).


n, degrees of freedom (for greater) mean square) n. 
0 00 

2 08
2:83 

203
2:74 

1 97
2:63 

1.93
2.55 

1.88
2.47 

1.84
2.38 

1.80
2.33 

1.76
2.25 

1.74
2.21 

1.71
2.16 

1.68
2.12 

1.67
2.10 

27 

2.06
2.80 

2.02
2.71 

1.96
2.60 

1.91
2.52 

1.87
2.44 

1.81
2.35 

1.78
2.30 

1.75
2.22 

1.72
2.18 

1.69
2.13 

1.67
2.09 

1.65
2.06 

28 

2.05
2.77 

2.00
2.68 

1.94
2.57 

1.90
2.49 

1.85
2.41 

1.80
2.32 

1.77
2.27 

1.73
2.19 

1.71
2.15 

1.68
2.10 

1.65
2.06 

1.64
2.03 

29 

2.04
2.74 

1.99
2.66 

1.93
2.55 

1.89
2.47 

1.84
2.38 

1.79
2.29 

1.76
2.24 

1.72
2.16 

1.69
2.13 

1.66
2.07 

1.64
2.03 

1.62
2.01 

30 

2.02
2.70 

1.97
2.62 

1.91
2.51 

1.86
2.42 

1.82
2.34 

1.76
2.25 

1.74
2.20 

1.69
2.12 

1.67
2.08 

1.64
2.02 

1.61
1.98 

1.59
1.96 

32 

2.00
2.66 

1.95
2.58 

1.89
2.47 

1.84
2.38 

1.80
2.30 

1.74
2.21 

1.71
2.15 

1.67
2.08 

1.64
2.04 

1.61
1.98 

1.69
1.94 

1.57
1.91 

34 

1.98
2.62 

1.93
2.54 

1.87
2.43 

1.82
2.35 

1.78
2.26 

1.72
2.17 

1.69
2.12 

1.65
2.04 

1.62
2.00 

1.59
1.94 

1.56
1.90 

1.55
1.87 

36 

1.96
2.59 

1.02
2.51 

1.85
2.40 

1.80
2.32 

1.76
2.22 

1.71
2.14 

1.67
2.08 

1.63
2.00 

1.60
1.97 

1.57
1.90 

1.54
1.86 

1.53
1.84 

38 

1.95
2.56 

1.90
2.49 

1.84
2.37 

1.79
2.29 

1.74
2.20 

1.69
2.11 

1.66
2.05 

1.61
1.97 

1.59
1.94 

1.55
1.88 

L53
1.84 

1.51
1.81 

40 

1.94
2.54 

1.89
2.46 

1.82
2.35 

1.78
2.26 

1.73
2.17 

1.68
2.08 

1.64
2.02 

1.60
1.94 

1.57
1.91 

1.54
1.85 

1.51
1.80 

1.49
1.78 

42 

1.92
2.52 

1.88
2." 

1.81
2.32 

1.76
2.24 

1.72
2.15 

1.66
2.06 

1.63
2.00 

1.58
1.92 

1.56
1.88 

1.62
1.82 

L50
1.78 

1.48
1.75 

44 

1.91
2.50 

1.87
2.42 

1.80
2.30 

1.76
2.22 

1.71
2.13 

1.65
2.04 

1.62
1.98 

1.57
1.90 

1.54
1.86 

1.51
1.80 

1.48
1.76 

1.46
1.72 

46 

1.90
2.48 

1.86
2.40 

1.70
2.28 

1.74
2.20 

1.70
2.11 

1.64
2.02 

1.61
1.96 

1.56
1.88 

1.53
1.84 

1.50
1.78 

L47
1.73 

1.45
1.70 

48 

1.90
2.46 

1.85
2.39 

1.78
2.26 

1.74
2.18 

1.69
2.10 

1.63
2.00 

1.60
1.94 

1.55
1.86 

1.52
1.82 

1.48
1.76 

1.46
1.71 

1.44
1.68 

50 

1.88
2.43 

1.83
2.35 

1.76
2.23 

1.72
2.15 

1.67
2.06 

1.61
1.96 

1.68
1.90 

1.52
1.82 

1.50
1.78 

1.46
1.71 

1.43
1.66 

1.41
1.64 

55 

1.86
2.40 

1.81
2.32 

1.75
2.20 

1.70
2.12 

1.65
2.03 

1.59
1.92 

1.56
1.87 

1.50
1.79 

1.48
1.74 

1.44
1.68 

1.41
1.63 

1.39
1.60 

60 

1.85
2.37 

1.80
2.30 

1.73
2.18 

1.68
2.09 

1.63
2.00 

1.57
1.90 

1.54
1.84 

1.49
1.76 

1.46
1.71 

1.42
1.64 

1.39
1.60 

1.37
1.56 

65 

1.84
2.25 

1.79
2.28 

1.72
2.15 

1.67
2.07 

1.62
1.98 

1.56
1.88 

1.53
1.82 

1.47
1.74 

1.45
1.69 

1.40
1.62 

1.37
1.56 

1.35
1.53 

70 

1.82
2.32 

1.77
2.24 

1.70
2.11 

1.65
2.03 

1.60
1.94 

1.54
1.84 

1.51
1.78 

1.45
1.70 

1.42
1.65 

1.38
1.57 

1.35
1.52 

1.32
1.49 

80 

1.79
2.26 

1.75
2.19 

1.68
2.06 

1.63
1.98 

1.57
1.89 

1.51
1.79 

1.48
1.73 

1.42
1.64 

1.39
1.59 

1.34
1.51 

1.30
1.46 

1.28
1.43 

100 

1.77
2.23 

1.72
2.15 

1.65
2.03 

1.60
1.94 

1.55
1.85 

1.49
1.75 

1.45
1.68 

1.39
1.59 

1.36
1.54 

1.31
1.46 

1.27
1.40 

1.25
1.37 

125 

1.76
2.20 

1.71
2.12 

1.64
2.00 

1.59
1.91 

1.54
1.83 

1.47
1.72 

1.44
1.66 

1.37
1.56 

1.34
1.51 

1.29
1.43 

1.25
1.37 

1.22
1.33 

150 

1.74
2.17 

1.69
2.09 

1.62
1.97 

1.57
1.88 

1.52
1.79 

1.45
1.69 

1.42
1.62 

1.35
1.53 

1.32
1.48 

1.26
1.39 

1.22
1.33 

1.19
1.28 

200 

1.72
2.12 

1.67
2.04 

1.60
1.92 

1.54
1.84 

1.49
1.74 

1.42
1.64 

1.38
1.57 

1.32
1.47 

1.28
1.42 

1.22
1.32 

1.16
1.24 

1'13
1.19 

400 

1.70 1.65 1.58 1.53 1.47 1.41 1.36 1.30 1.26 1.19 1.13 1.08 1000 
2.09 2.01 1.89 1.81 1.71 1.61 1.54 I." 1.38 1.28 1.19 1.11 
1.60 
2.07 

1.64 
1.99 

1.57 
1.87 

1.52 
1.79 

1.46 
1.69 

1.40 
1.59 

1.35 
1.52 

1.28 
1.41 

1.24 
1.36 

1.17 
1.25 

1.11 
1.15 

1.00 
1.00 

oo 
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APPENDIX Table VI

POISSON TABLES


Construction of the Table Giving the Probability of x or More Events 
Happening in a Given Interval if W, the Average Number of Events 
per Interval is Known - The probability that 'x' Events will 
Happen in a given time or space segment is equal to 

Pn 
 e-m (MX) 
x 

where x refers to any value of V. 
The value of this expression for various values of 'm' and Y is 

readily available in standard Poisson tables. 
Thus P. may be found for any given values of 'x' and 'm'. For 

example, if m = 4 and x r-- 0. 
e-- (mx) e-4 (40) 

PO = = 0.018x! 0! 
If m;= 4 and x;--= I 

e-M (mx) e-4 (41) 0.0183 (4)
P, 0.073

x! 
If m = 4 and x;== 2 

e-4 (42) .0183 (16) 
P2 
 

 = 0.1472! 2 

If ln
4andx=3 
e-4 (43) 0.0183 (64) 

P3 0.1953! 6 
This procedure can of course, be continued. 
The probability of getting three or less is the sum of the prob­

ability of getting 0, 1, 2 or 3 and therefore is equal 0.018 + 0.073 
+ 0.147 + 0.195 
 0.433 = 43.3 in 100 or 43.3 per cent. The 
probability of getting four or more is 56.7 out of 100 or 56.7 per 
cent. This followsfrom the fact that the total probability of getting 
all possible numbers is one or 100 per cent. This is the procedure 
followed in the calculation of the tables. Therefore, the values 
given in the tables are 

0 Ml M2 M(X-1) 
1 -e-m + - + - + +

(7l I ! 2 1 (x - 1)! 



IF "m", THE AVERAGE NUMBER or EVENTS PER INTERVAL, 118 KNowN, THEN THE PROBABILITY OF "X" OR MORE 

HAPPENING IN THIS INTERVAL MAY BE READ Fnom THIS TABLE 

in x 1 2 3 4 5 6 7 8 9 10 11 

.1 .095 .005 
.2 .181 .018 .001 
.3 .259 .037 .004 
.4 .330 .062 .008 .001 
.5 .393 .090 .014 .002 

.6 .451 .122 .023 .003 

.7 .603 .156 .034 .006 .001 

.8 .551 .191 .047 .009 .001 

.9 .593 .228 .063 .013 .002 
1.0 .632 .264 .080 .018 .004 .001 

1.1 .667 .301 .100 .026 .005 .001 
1.2 .690 .337 .121 .034 .008 .002 
1.3 .727 .373 .143 .043 .011 .002 
1.4 .753 .408 .167 .054 .014 .003 .001 
1.5 .777 .442 .191 .066 .019 .004 .001 

1.6 .798 .475 .217 .079 .024 .006 .001 
1.7 .817 .507 .243 .093 .030 .008 .002 
1.8 .835 .637 .269 .109 .036 .010 .003 .001 
1.9 .850 .566 .296 .125 .044 .013 .003 .001 
2.0 .865 .594 .323 .143 .053 .017 .005 .001 

2.1 .878 .620 .350 .161 .062 .020 .006 .001 
2.2 .889 .645 .377 .181 .072 .025 .007 .002 
2.3 .900 .669 .404 .201 .084 .030 .009 .003 .001 
2.4 .909 .692 .430 .221 .096 .036 .012 .003 .001 
2.5 .918 .713 .456 .242 .109 .042 .014 .004 .001 

2.6 .926 .733 .482 .264 .123 .049 .017 .005 .001 
2.7 .933 .751 .506 .286 .137 .057 .021 .007 .002 .001 
2.8 .939 .769 .531 .308 .152 .065 .024 .008 .002 .001 
2.9 .945 .785 .554 .330 .168 .074 .029 .010 .003 .001 
3.0 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001 

3.1 .055 .815 .599 .375 .202 .004 .039 .014 .005 .001 
3.2 .959 .829 .620 .307 .219 .105 .045 .017 .000 .002 
3.3 .063 .841 .641 .420 .237 .117 .051 .020 .007 .002 .001 
3.4 .967 , .853 .660 .442 .256 .129 .068 .023 .008 .003 .001 t* 
3.5 .970 .864 .679 .463 .275 .142 .065 .027 .010 .003 .001 



IF "M", THE AVERAcfE NumBER OF EvEirrs PER INTERVAL, is KiqowN, THEN THE PROBABILITY OF "X" OR MORE k-0 

HA-Ppm-m-TG iN THis INTERVAL MAY BE READ Pitom THis TABLE 00 

m X 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 

3.6 
3.7 
3.8 
3.9 
4.0 

.973 

.075 

.978 

.980 

.982 

.874 

.884 

.893 

.001 

.908 

.697 

.715 

.731 

.747 

.762 

.485 

.506 

.527 

.647 

.567 

.294 

.313 

.332 

.352 

.371 

.156 

.170 

.184 

.199 

.215 

.073 

.082 

.091 

.101 

.111 

.(31

.035 

.040 

.045 

.051 

.012 

.014 

.016 

.019 

.021 

.004 

.005 

.006 

.007 

.008 

.001 

.002 

.002 

.002 

.003 

.001 
.001 
.001 

4.1 
4.2 
4.3 
4.4 
4.5 

.983 

.985 
.986 
.988 
.989 

.015 

.922 

.928 

.934 

.939 

.776 

.790 

.803 

.815 

.826 

.686 

.605 

.623 

.641 

.658 

.391 

.410 

.430 

.449 

.468 

.231 

.247 

.263 

.280 

.297 

.121 

.133 

.144 

.166 

.169 

.057 

.064 

.071 

.079 

.087 

.024 

.028 

.032 

.036 

.040 

.010 

.011 

.013 

.015 

.017 

.003 

.004 

.005 

.006 

.007 

.001 

.001 

.002 

.002 

.002 

.001 

.001 

.001 

4.6 
4.7 
4.8 
4.0 
5.0 

.000 
.991 
.992 
.903 
.993 

.044 

.948 
.952 
.056 
.960 

.837 
.848 
.857 
.867 
.875 

.674 
.690 
.706 
.721 
.735 

.487 

.605 

.624 

.542 

.560 

.314 

.332 

.349 

.366 

.384 

.182 

.105 

.209 

.233 

.238 

.(95 

.104 

.113 

.123 

.133 

.045 

.050 

.056 

.062 

.068 

.020 

.022 

.025 

.028 

.032 

.008 

.009 

.010 

.012 

.014 

.003 

.003 

.004 

.005 

.005 

.001 
.001 
.001 
.002 
.002 

.001 

.001 

6.1 
5.2 
5.3 
6.4 
6.6 

.994 

.994 

.995 

.995 

.996 

.963 

.966 

.969 

.971 

.973 

.884 

.891 
.898 
.905 
.912 

.749 

.762 

.776 

.787 

.798 

.677 
.694 
.610 
.627 
.642 

-402 
.419 
.437 
.454 
.471 

.253 
.268 
.283 
.298 
.314 

.144 

.155 

.167 

.178 

.191 

.075 
.082 
.089 
.097 
.106 

.036 

.040 

.044 

.049 
.054 

.016 

.018 

.020 

.023 

.025 

.006 

.007 

.008 

.010 

.011 

.002 

.003 

.003 

.004 

.004 

.001 

.001 

.001 

.001 

.002 .001 

5.6 
6.7 
6.8 
5.9 
6.0 

.996 

.997 

.997 

.997 

.998 

.976 

.078 

.979 

.981 

.983 

.918 

.023 

.928 

.933 

.938 

.809 

.820 

.830 

.840 

.849 

.658 

.673 

.687 

.701 
.715 

.488 

.505 
.522 
.538 
.554 

.330 
.346 
.362 
.378 
.394 

.203 

.216 

.229 

.242 

.256 

.114 

.123 

.133 

.143 

.153 

.059 

.065 

.071 

.077 

.084 

.028 

.031 

.035 

.039 

.043 

.012 

.014 

.016 
1018 
.020 

.005 

.006 
.007 
.008 
.009 

.002 

.002 

.003 

.003 

.004 

.001 

.001 

.001 

.001 

.001 .00:1 0
­

6.1 
6.2 
6.3 
6.4 
6.6 

.998 

.998 

.998 

.998 

.998 

.984 

.985 

.987 
.988 
.089 

.942 

.946 

.950 

.954 

.057 

.857 

.866 

.874 
.881 
.888 

.728 

.741 

.753 

.765 
.776 

.570 

.686 

.601 

.616 

.631 -- 

.410 

.426 
A42 
.458 
.473-

.270 

.284 

.298 

.1313 

.327 

.163 

.174 

.185 

.197 

.208 

.091 

.098 

.106 

.114 

.123 

.047 

.051 

.056 

.061 

.067 

.022 

.025 

.028 

.031 

.034 

.010 
.011 
.013 
.014 
.016 

.004 

.005 

.005 

.006 

.007 

.002 

.002 

.002 

.003 

.003 

.001 

.001 
.00:1 
.001 
.00:1 w 

6.6 
6.7 
6.8 
6.9 
7.0 

.099 

.999 

.999 

.999 

.090 

.990 

.991 

.991 

.992 

.903 

.060 

.963 

.966 

.968 

.970 

.895 

.901 

.907 

.913 

.018 

.787 

.798 

.808 

.818 

.827 

.645 

.659 

.673 

.686 

.699 

.489 
.505 
.520 
.535 
.550 

.342 

.357 

.372 

.386 

.401 

.220 

.233 

.245 

.258 

.271 

.131 

.140 

.150 

.160 

.170 

.073 

.079 

.085 

.092 

.099 

.037 

.041 

.046 

.049 

.053 

.018 

.020 

.022 

.024 
.027 

.008 

.009 

.010 

.011 

.013 

.003 

.004 

.004 

.005 

.006 

.001 

.002 

.002 

.002 

.002 

.001 

.001 

.001 

.001 

.001 



IF "M", THE AVERAGE NUMBER OF EVENTS PER INTERVAL, IS KcNowx, THEN THE PROBABILITY OF "X" Olt MORE 

HAPPENING IN THIS INTERVAL MAY BE READ FROM THIS TA13LE 

M X 1 --- 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

7.1 .099 
7.2 .999 
7.3 .999 
7.4 .999 
7.5 .999 

.093 
.994 
.994 
.995 
.995 

.973 
.975 
.976 
.978 
.980 

.923 
.928 
.933 
.937 
.941 

.830 

.844 

.853 

.860 

.868 

.712 

.724 

.736 

.747 

.759 

.565 

.580 

.594 

.608 

.622 

.416 

.431 

.446 

.461 

.475 

.284 

.297 

.311 

.324 

.338 

.180 

.190 

.201 

.212 

.224 

.106 
.113 
.121 
.129 
.138 

.058 

.063 

.068 

.074 

.079 

.030 

.033 

.036 

.039 

.043 

.014 
.016 
.018 
.020 
.022 

.006 

.007 

.008 

.009 

.010 

.003 

.003 

.004 

.004 

.005 

.001 
.001 
.001 
.002 
.002 

.001 

.001 

.001 
7.6 .999 
7.7 1.00 
7.8 1.00 
7.9 1.00 
8.0 1.00 

.996 

.996 

.996 

.997 

.907 

.981 
.983 
.984 
.985 
.986 

.946 
.948 
.952 
.955 
.958 

.875 

.882 

.888 

.894 

.900 

.769 

.780 

.790 

.799 

.809 

.635 

.649 

.662 

.674 

.687 

.490 

.504 

.519 

.533 

.547 

.352 

.366 

.380 

.393 

.407 

.235 

.247 

.259 

.271 

.283 

.146 

.155 

.165 
.174 
.184 

.085 

.091 

.098 
.105 
.112 

.046 

.050 
.055 
.059 
.064 

.024 

.026 

.029 

.031 

.034 

.011 

.013 

.014 
.016 
.017 

.005 

.006 

.007 

.007 

.008 

.002 

.003 
.003 
.003 
.004 

.001 

.001 

.001 

.001 

.002 
.001 
.001 

8.1 1.00 
8.2 1.00 
8.3 1.00 
8.4 1.00 
8.5 1.00 

.997 
.997 
.998 
.998 
.998 

.987 
.988 
.989 
.990 
.991 

.960 

.963 

.965 

.968 

.970 

.906 

.911 
.916 
.921 
.926 

.818 

.826 
.835 
.843 
.850 

.699 

.710 
.722 
.733 
.744 

.561 

.575 

.588 

.601 

.614 

.421 

.435 

.449 

.463 

.477 

.296 .194 

.308 .204 

.321 .215 

.334 .226 

..347 .237 

.119 

.127 

.135 

.143 

.151 

.069 

.074 

.079 

.085 

.091 

.037 
.040 
.044 
.048 
.051 

.019 

.021 

.023 

.025 

.027 

.009 

.010 

.011 

.013 

.014 

.004 

.005 

.005 
.006 
.007 

.002 

.002 

.002 
.003 
.003 

.001 

.001 

.001 

.001 

.001 .001 

0­

8.6 1.00 
8.7 1.00 
8.8 1.00 
8.9 1.00 
9.0 1.00 

.998 

.998 

.999 

.999 

.999 

.991 

.992 

.993 

.993 

.994 

.972 

.974 

.976 

.977 

.979 

.930 

.934 

.938 
.942 
.945 

.858 
.865 
.872 
.878 
.884 

.754 
.765 
.774 
.784 
.793 

.627 

.640 

.652 
.664 
.676 

.491 

.504 

.518 
.531 
.544 

.360 

.373 

.386 
.399 
.413 

.248 

.259 

.271 

.282 

.294 

.160 

.169 

.178 

.187 

.197 

.097 

.103 

.110 

.117 

.124 

.055 

.060 

.064 

.069 

.074 

.030 

.033 

.035 

.038 

.041 

.015 

.017 

.018 

.020 

.022 

.007 

.008 

.009 

.010 

.011 

.003 

.004 

.004 

.005 

.005 

.001 

.002 

.002 

.002 

.002 

.001 

.001 

.001 

.001 

.001 

9.1 1.00 
9.2 1.00 
9.3 1.00 
9.4 1.00 
9.5 1.00 

.999 

.999 

.999 

.999 

.999 

.994 

.995 

.995 

.995 

.996 

.980 

.982 

.983 

.984 

.985 

.948 

.951 

.954 

.957 

.960 

.890 
.896 
.901 
.907 
.911 

.802 
.811 
.819 
.827 
.835 

.688 

.699 

.710 

.721 

.731 

.557 

.570 
.583 
.596 
.608 

.426 
.439 
.452 
.465 
.478 

.306 

.318 

.330 

.342 

.355 

.207 

.217 

.227 

.237 

.248 

.132 

.139 

.147 

.155 

.164 

.079 

.084 

.090 

.096 

.102 

.045 

.085 

.052 

.056 

.060 

.024 

.026 

.028 

.031 

.033 

.012 

.013 

.015 

.016 

.018 

.006 

.007 

.007 

.008 

.009 

.003 

.003 

.003 

.004 

.004 

.001 

.001 

.002 

.002 

.002 

.001 
.001 
.001 
.001 
.001 

9.6 1.00 
9.7 1.00 
9.8 1.00 
9.9 1.00 

10.0 1.00 

.999 

.999 

.999 

.999 
1.00 

.996 

.996 

.997 

.997 

.997 

.986 

.987 

.988 

.989 

.990 

.962 

.966 

.967 

.069 

.971 

.916 

.921 

.925 

.929 

.933 

.843 

.850 

.857 

.863 

.870 

.742 

.752 

.761 

.771 

.780 

.620 

.632 

.644 

.656 

.667 

.491 

.604 

.517 

.529 

.642 

.367 
.379 
.392 
.404 
.417 

.259 

.270 
.281 
.202 
.303 

.172 

.181 
.190 
.199 
.208 

.108 
.115 
.121 
.128 
.136 

.064 

.069 

.073 

.078 

.083 

.036 

.039 

.042 

.045 

.049 

.019 

.021 
.023 
.025 
.027 

.010 

.011 

.012 

.013 

.014 

.005 

.005 

.006 

.007 

.007 

.002 

.002 

.003 

.003 

.003 

.001 

.001 
.001 
.001 
.002 

.001 
.001 
.001 

10.1 
10.2 
10.3 
10.4 
3.0.6 

1.00 
1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 
1.00 

.997 

.998 

.998 
.998 
.998 

.990 

.991 

.992 

.092 

.993 

.973 

.974 

.976 

.977 

.979 

.937 

.940 

.943 

.947 
.950 

.876 

.882 

.888 

.893 

.898 

.789 

.797 

.806 

.814 

.821 

.678 

.689 

.700 

.710 

.721 

.555 

.567 

.579 

.591 

.603 

.429 

.442 

.454 

.467 

.479 

.316 

.326 

.338 

.350 

.361 

.218 

.228 

.238 

248 
.258 

.143 

.151 

.158 

.166 

.175 

.089 

.094 

.100 

.106 

.112 

.052 -. 029 .016 

.056 .032 .017 

.060 .034 .019 

.064 .037 .020 

.068 .040 .033 

.008 

.009 

.010 

.011 

.012 

.004 

.004 

.005 

.005 

.006 

.002 

.002 

.002 

.003 

.003 

.001 

.001 

.001 

.001 01 
001 

t) 



IF "M", THE AVERAGE NumBER OF EvENTs P:
m INTERVAL, is Ki-TowN, THEN THE PROBABILITY OF "X" OR MORE 

H-A-PPENING IN THis INTERVAL MAY BF, READ FRom THis TA13LE 

M -'
 X1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

10.6 1.00 1.00 
10.7 1.00 1.00 
10.8 1.00 1.00 
10.0 1.00 1.00 
11.0 1.00 1.00 

.998 .993 .980 .952 .903 .829 .731 .616 .492 .373 .268 .183 .118 .073 .043 

.998 .994 .982 .955 .908 .836 .740 .626 .604: .385 .2719 .192 .125 .077 .046 

.909 .994 .983 .958 .913 .843 .750 .637 .516 .397 .290 .201 .132 .082 .049 

.999 .995 .984 .960 .917 .860 .759 -649 .526 .400 .300 .210 .137 .087 .052 

.999 .095 .985 .962 .921 .867 .768 .659 .54C .421 .311 .219 .146 .093 .056 

.024 .013 .006 .003 .001 .001 

.026 .014 .007 .003 .002 .001 

.028 .015 .008 .004 .002 .001 

.030 .016 .008 .004 .002 .001 

.032 .018 .009 .005 .002 .001 

m 

11.1 1.00 
11.2 1.00 
11.3 1.00 
11.4 1.00 
11.5 1.00 

1.00 .999 .995 .086 .965 .925 .863 .777 .670 
1.00 .990 .996 .087 .967 .929 .869 .785 .681 
1.00 .999 .996 .988 .969 .933 .875 .794 .691 
1.00 .999 .996 .988 .971 .936 .881 .802 .701 
1.00 .999 .997 .989 .972 .940 .886 .809 .711 

.552 .433 .322 .228 .153 .098 .060 .035 .019 .010 .005 .003 .001 .001 

.664 .445 .333 .238 .161 .104 .064 .037 .021 .011 .006 .003 .001 .001 
.67,1, .456 .345 .247 .169 .109 .068 .040 .022 .012 .006 .003 .001 .001 
.58i .468 .356 .257 .177 .115 -072 .043 .024 .013 .007 .003 .002 .001 
.59E, .480 .367 .267 .185 .122 .076 .046 .026 .014 .008 .004 .002 .001 tj 

11.6 1.00 
11.7 1.00 
11.8 1.00 
11.9 1.00 
12.0 1.00 

1.00 
1.00 
1.00 
1.00 
1.00 

.999 ;997 .990 .974 .943 .892 .817 .721 .60C .492 .378 

.999 .997 .991 .975 .946 .897 .824 .730 .621 .504 .390 

.999 .997 .991 .977 .949 .901 .831 .740 .631 .516 .401 

.999 .998 .992 .978 .952 .906 .838 .749 .642 .527 .41.3 

.099 .998 .992 .980 .954 .910 .845 .758 .653 .538 .424 

.277 

.287 
.297 
.308 
.318 

.103 .128 .081 .049 .028 .016 .008 

.202 .135 .086 .052 .030 .017 .009 

.210 .141 .091 .056 .033 .018 .010 

.219 .148 .096 .059 .035 .020 .011 

.228 .156 .101 .063 .037 .021 .012 

.004 .002 .001 

.005 .002 .001 

.005 .002 .001 .001 

.006 .003 .001 .001 

.006 .003 .001 .001 

12.1 
12.2 
12.3 
12.4 
12.5 

1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 
1.00 1.00 1.00 

.998 .993 .981 .957 .916 .851 

.998 .993 .982 .959 .919 .858 

.998 .994 .9S3 .961 .923 .864 

.998 .994 .984 .963 .927 .869 

.998 .995 .985 .965 .930 .875 

.766 .663 .550 .435 

.775 .673 .561 .447 

.783 .683 .572 .458 

.791 .693 .583 .470 

.799 .703 .594 .481 

.329 .237 .163 .107 .067 .040 .023 .013 .007 .003 .002 .001 

.340 .246 .170 .113 .071 .043 .025 .014 .007 .004 .002 .001 

.350 .256 .178 .118 .075 .046 .027 .015 .008 .004 .002 .001 

.361 .265 .186 .124 .080 .049 .029 .016 .009 .004 .002 .001 

.372 .275 .194 .131 .084 .062 .031 .017 .009 .005 .002. .001 .001 

12.6 
12.7 
12.8 
12.9 
13.0 

1.00 1.00 
1.00 1.00 
1.00 1.00 
1.00 1.00 
1.00 1.00 

1.00 .999 .995 
1.00 .099 .995 
1.00 .999 .096 
1.00 .099 .996 
1.00 .999 .996 

.986 .967 .934 .880 

.987 .069 .937 .886 

.988 .971 .940 .891 

.989 .973 .943 .896 

.989 .974 .946 .900 

.806 .712 .605 .492 

.813 .722 .616 .504 

.821 .731 .626 .515 

.827 .740 .637 .526 

.834 .748 .647 .537 

.383 .285 

.394 .295 

.405 .305 

.416 .315 

.427 .325 

.202 .137 

.210 .144 

.219 .160 

.228 .157 

.236 .165 

.089 .055 .033 .019 

.094 .059 -035 .020 

.099 .062 .037 .022 

.104 .066 .040 .023 

.110 .070 .043 .025 

.010 

.011 

.012 

.013 

.014 

.005 .003 .001 .001 

.006 .003 .001 .001 

.006 .003 .002 .001 

.007 .004 .002 .001 

.008 .004 .002 .001 

13.1 1.00 1.00 1.00 .999 
13.2 1.00 1.00 1.00 .999 
13.3 1.00 1.00 1.00 .999 
13.4 1.00 1.00 1.00 .999 
13.5 1.00 1.00 1.00 .999 

.997 .900 

.997 .991 

.997 .991 

.997 .902 

.997 .992 

.976 .940 

.977 .951 

.978 .954 

.080 .956 

.981 .959 

.905 .841 

.909 .847 

.913 .853 

.917 .859 

.921 .865 

.767 .657 .548 

.765 .667 .559 

.773 .677 .569 

.781 .686 .580 

.789 .696 .591 

.438 .335 .245 .172 .115 .074 .045 .027 .015 .008 .004 .002 .001 .001 

.449 .345 .254 .179 .121 .078 .048 .029 .016 .009 .005 .002 .001 .001 
.460 .356 .264 .187 .127 .082 .051 .031 .018 .010 .005 .003 .001 .001 
.471 .366 .273 .195 .133 .087 .055 .033 .019 .011 .006 .003 .001 .001 
.482 .377 .282 .202 .139 .092 .058 .035 .020 .011 .006 .003 .002 .001 

13.6 1.00 
13.7 1.00 
13.8 1.00 
13.9 1.00 
14.0 1.00 

1.00 1.00 .999 .998 .993 .982 .961 .925 .870 .796 .705 .601 .493 .387 .292 .211 
1.00 1.00 .999 .998 .993 .983 .963 .928 .876 .804 .714 .611 .503 .398 .301 .219 
1.00 1.00 .999 .998 .994 .984 .965 .932 .881 .811 .723 .622 .514 .408 .311 .227 
1.00 1.00 .909 .998 .904 .985 .967 .935 .886 .818 .731 .632 .525 .419 .321 .235 
1.00 1.00 1.00 .998 .994 .086 .968 .938 .891 .824 .740 .642 .536 .430 .331 .244 

.146 .096 .061 .037 .022 .012 .007 .004 .002 .001 

.152 .101 .065 .040 .024 .013 .007 .004 .002 .001 

.159 .107 .060 .042 .025 .014 .008 .004 .002 .001 .001 

.166 .112 .072 .045 .027 .016 .009 .005 .002 .001 .001 

.173 .117 .076 .048 .029 .017 .009 .005 .003 .001 .001 



IF "M", THE AVERAGE NUA113ER OF EVENTS PER INTERVAL, is KNOWN, THEN THE PROBABILITY OF "X" OR MORE 

HAPPENING IN THIS INTERVAL MAY BE READ FRom Tins TABLE 

m 1 2 a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

14.1 1.00 1.00 1.00 1.00 .998 .995 .987 .970 .941 .895 .831 .748 .651 .546 .440 .341 .253 .180 .123 .081 .051 .031 .018 .010 .005 .003 .001 .001

14.2 1.00 1.00 1.00 1.00 .998 .995 .987 .972 .944 .900 .837 .756 .661 .557 .451 .351 .262 .187 .129 .085 .054 .033 .019 .011 .006 .003 .002 .001

14.3 1.00 1.00 1.00 1.00 .999 .995 .988 .973 .047 .904 .843 .764 .670 .567 .461 .361 .271 .195 .135 .089 .057 .035 .021 .012 .006 .003 .002 .001

14.4 1.00 1.00 1.00 1.00 .999 .996 .989 .975 .949 .908 .849 .772 .680 .577 .472 .371 .280 .203 .141 .094 .060 .037 .022 .013 .007 .004 .002 .001

14.5 1.00 1.00 1.00 1.00 .999 .996 .990 .976 .952 .912 .855 .780 .689 .587 .482 .381 .289 .210 .147 .099 .064 .040 .024 .014 .008 .004 .002 .001 .001


14.6 1.00 1.00 1.00 1.00 .999 .996 .990 .977 .954 .916 .861 .787 .698 .598 .493 .391 .298 .218 .153 .104 .067 .042 .025 .015 .008 .004 .002 .001 .001

14.7 1.00 1.00 1.00 1.00 .999 .997 .991 .979 .956 .920 .866 .795 .707 .608 .503 .401 .307 .226 .160 .109 .071 .045 .027 .016 .009 .005 .003 .001 .001

14.8 1.00 1.00 1.00 1.00 .999 .997 .991 .980 .958 .923 .871 .802 .715 .617 .514 .411 .317 .234 .167 .114 .075 .047 .029 .017 .010 .005 .003 .001 .001

14.9 1.00 1.00 1.00 1.00 .999 .997 .992 .981 .961 .927 .877 .809 .724 .627 .524 .422 .326 .243 .174 .119 .079 .050 .031 .018 .010 .006 .003 .002 .001

15.0 1.00 1.00 1.00 1.00 .999 .997 .992 .982 .963 .930 .882 .815 .732 .638 .534 .432 .336 .251 .181 .125 .083 .053 .033 .019 .011 .006 .003 .002 .001
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